
torn at the seams:
considering computational
vernacular

Michael Murtaugh

Processing is a free, open source programming language and
environment used by students, artists, designers, architects, re-
searchers and hobbyists for learning, prototyping, and produc-
tion. Processing is developed by artists and designers as an al-
ternative to proprietary software tools in the same domain. The
project integrates a programming language, development envi-
ronment, and teaching methodology into a unified structure for
learning and exploration.1

Teaching programming with free software to media design students for
years, I’ve resisted Processing as it has always seemed to me to embody
a particular kind of solipsism of digital interactivity and graphics that I want
my students to avoid.

Design by numbers
1 Casey Reas and Ben Fry, Processing: A Programming Handbook for Visual Designers

and Artists (Cambridge: MIT Press, 2007), xxi-xxii.

* 1



In the fall of 1996, John Maeda joined the MIT Media Lab to replace the
recently deceased Muriel Cooper. Cooper was the first art director of the
MIT Press, producing influential designs such as a 1969 catalogue of the
Bauhaus and the iconicMIT Press logo, a Bauhaus-inspired stylised graph-
ical rendering of the letters “mitp.” Cooper started the Visible Language
Workshop, later one of the founding groups of the MIT Media Lab, to re-
search the intersection of publishing, design, and computation.

Our forefathers at the Bauhaus, Ulm, and many other key centers
for design education around the world labored to create a sense
of order and method to their teaching. Thanks to their trailblazing
work, teaching at the university level gradually became accepted
as a meaningful and constructive activity. A drawing board, small
or large, became the stage for paper, pen, ink, and blade to in-
teract in the disciplined activity that characterized the profession
of visual design.2

Maeda created the Aesthetics and Computation Group, in part to continue
Cooper’s research. Maeda developed (with students Tom White, Peter
Cho, Ben Fry, and later Casey Reas among others) a software system
called Design by Numbers (DBN).3 It had extreme constraints such as a
fixed 100 by 100 pixel size and monochrome-only graphics. The command
set is similarly constrained with only two drawing commands for lines and
2 John Maeda, Design by Numbers (Cambridge: MIT Press, 1999), 19.
3 https://dbn.media.mit.edu

2 ¶



points. Commands like “paper” and “pen,” controlling the grey value of
background and foreground colours, invoke the materiality of a (pre-digital)
print practice. The accompanying print publication also had a square for-
mat.

When designing this system for learning basic computational media
design, I intentionally limited the set of commands and constructs to a min-
imal number of possibilities. If I had given you drawing capability beyond a
line or setting a dot, the examples could have been more exciting, but the
point could not be made clearly because your attention would be drawn to
the picture and not to the code.4

This valorization of “code” over picture is evident in the book spread where
a digital image of a vase is presented along with its “code”: a sequence of
“set” commands describing the image pixel by pixel. Though it’s possible
that such an image might be produced in this way (discipline!) in practice
such images are created by translating a digital photograph using one of a
family of techniques known as “dithering” to produce a pixelated imagewith
limited grey values. Here these tools and techniques are unmentioned,
with expansive space given instead to the listing of numbers.

I remember sitting with a friend at his Commodore 64 in the 1980s
typing lines and lines of “poke” commands with digital data from the pages
of home computer magazines to reproduce simple games. These pages
would typically use compact representations (like hexadecimal) and in-
clude things like “checksums” and bootstrap programs to help you correctly
4 Maeda. Design by Numbers, 144.

¶ 3



enter and verify the data you entered.
In the case of the DBN’s digital vase, the purpose does not seem to be

for someone to actually type the numbers in, but rather to fill the pages of a
book that seems destined for the coffee table rather than a desktop. Simi-
lar to the fields of 1s and 0s still popular as backgrounds of book sleeves
and PowerPoint slides to suggest “all things digital,” the presentation is
gratuitous and misleading in terms of actual practice. Like an observer un-
familiar with Deaf culture confusing the hand gestures of finger spelling
with the expressivity (and ambiguity) of actual sign language, the displays
of 1s and 0s, or in this case of numeric coordinates and grey values, is
a shorthand that refers to computational practices without actually partici-
pating in them.

The above is just one example of DBN’s lack of historicity. In 1999,
the Sony PlayStation and access to the World Wide Web, for instance,
were popular phenomena, yet the text seems remarkably devoid of any
reference to specific tools or practices. Even Maeda’s invocations of his-
torical figures like the Bauhaus and Paul Rand are vague, evoking a sort
of nostalgic Mad Men universe with the creative young men (those future
forefathers) at their drawing boards and a sense of “timeless design val-
ues” like a devotion to discipline and order.

At the end of the book Maeda responds to a critique apparently made
to him by one of the students doing some of the programming of the DBN
system itself. Recounting how a visit to a “university-level Java class for
designers […] teach[ing] the finer points of object-oriented programming
and bit masking of 24-bit color values” made him feel “lost in all the gib-

4 ¶



berish,” he reasserts his pedagogical approach as an alignment with the
“simplification” that is the “constant goal” of programming.5 Rather than
trying to bridge the gulf between diverse practices, Maeda dismisses that
which he doesn’t (care to) understand in the name of simplification.

Processing
Processing was born as kind of fork or remake of DBN. Like DBN, Reas
and Fry built Processing in Java, a desktop application that exists outside
of the web but which can be used to publish sketches as “applets” embed-
ded in a web page and published online. Reas and Fry added commands
to work with colour and multiple output sizes, as well as commands to draw
basic shapes like circles, rectangles, and triangles.

Processing sketches consist of (at least) two functions: setup which
is invoked once and draw which is invoked continuously; the default fre-
quency being the refresh rate of the computer’s display (typically 60 times
per second). By using variables combined with input functions allowing
access to the mouse and keyboard, graphics can be made dynamic and
responsive to the user. In addition, graphics by default are rendered us-
ing a technique known as “anti-aliasing” to appear “smoother” and less
pixelated.

5 Maeda. Design by Numbers, 252.

¶ 5



Most of the examples presented in this book have a minimal vi-
sual style. This represents not a limitation of the Processing soft-
ware, but rather a conscious decision by the authors to make the
code for each example as brief and clear as possible. We hope
the stark quality of the examples gives additional incentive to the
reader to extend the programs to her or his own visual language.6

Processing: A Programming Handbook for Visual Designers and Artists
was published in 2007 by the MIT Press, with Reas and Fry the authors,
and a foreword by Maeda. The book comprises over 700 pages and is or-
ganised by topics like: colour, control, data, drawing, image, input, math,
motion, structure, typography. The book follows the visual style of the DBN
book, with small square (mostly) monochrome images accompanying con-
cise listings of code.

Despite the claim of leaving space for others to bring their own “visual lan-
guage,” and thus an implicit proposition of its own aesthetics as “neutral,”
Processing embodies a very particular set of values and assumptions. The
framework valorises smoothness and fluidity, which leads one to imagine
interactivity as that which happens on the surface of a sketch, rather than
say in the network, or among collaborators. The mechanism of the “draw
loop” assumes that code runs in a negligible amount of time that is less
than the refresh rate (and the default 1/60th of a second). This particular,
6 Casey Reas and Ben Fry, Processing: A Programming Handbook for Visual Designers

and Artists (Cambridge: MIT Press, 2007), xxi-xxii.

6 ¶



again implicit, relationship with time places the programmer in an adver-
sarial relation with the processor of the viewer’s computer and makes it all
too easy (certainly for novices) to produce code that makes the viewer’s
computer struggle and lag.

Unlike DBN, the Processing book contains extensive interviews with artists
working with computational tools, mostly using a variety of tools outside of
Processing like C++, PHP, and Flash. Despite the “minimalism” of the ex-
amples, the book’s subtitle claims relevance to a broad audience of “visual
designers and artists.” The link to Processing is often unclear.

There’s a strange disconnect where a diversity of visual and computa-
tion practices are shown, such as sequential images to make animations,
or cellular automata, but the only real link to Processing seems to be as
a kind of universal “blank canvas” onto which all kinds of computational
practices can be projected.

Another disconnect occurs when one crosses out of what the software
makes simple. For example, while it’s very easy to make a sketch respond
to mouse clicks, responding to a mouse click on a specific shape suddenly
involves using Java classes and adding code “hooks” to your draw loop to
make sure the pieces work together. While this kind of code is not itself so
unusual, the transition is really abrupt because the core abstractions are
so simplified: there is no bridge.

Still another disconnect involves processing sketches when published
online. Web pages have structures for text layout and content flow, and
structural elements (like checkboxes and links) that inherently respond to

¶ 7



mouse clicks. There is a built-in standard mechanism (the so-called DOM
or document object model) to further customise these behaviors. Process-
ing sketches, even situated in a web page, don’t participate or give access
to this model, nor does the framework offer the possibility of using alterna-
tive graphical elements like scalable vector graphics (SVG).7

Software structures
In 2004, Reas co-developed an exhibition at the Whitney Museum called
Software Structures. Invoking Sol LeWitt’s wall drawings as an inspiration,
the project presents a series of abstract rules (or software structures) for
the production of an image, including rules from LeWitt. The rules were
then implemented using a variety of “materials”: Processing, Flash MX,
and C++.

A benefit of working with software structures instead of program-
ming languages is that it places the work outside the current tech-
nological framework, which is continually becoming obsolete. Be-
cause a software structure is independent from a specific tech-
nology, it is possible to continually create manifestations of any
software structure with current technology to avoid retrograde as-
sociations.8

In 2016, the Whitney published a “restored” version of Software Struc-
tures.9 As technologies like Java and Flash had then for reasons both
technical and commercial fallen out of popular use on the web, the new
version featured many of the Processing sketches adapted by Reas to use
p5.js, a recent rewrite of Processing in Javascript made by artist Lauren
Lee McCarthy.10

Despite the project’s earlier stated interest in exploring diverse “mate-
rialities,” it is telling that rather than considering the older processing imple-

7 A web standard, SVG is more integrated into the DOM than Java applets (in classic Pro-
cessing) or the canvas element (see p5.js) are.

8 Casey Reas, “Software Structures: A text about Software & Art,” Software Struc-
tures, Whitney Museum website, 2004, https://artport.whitney.org/commissions/
softwarestructures/text.html\#structure. Accessed October 28, 2021.

9 https://whitney.org/exhibitions/software-structures
10 Despite the seeming similarity of names, Java and Javascript are two completely inde-

pendent and quite different programming languages. Adapting software from one to the
other is not trivial. In making the adaptation McCarthy claims “diversity and inclusion as
core values upon which the software is built.” See: https://lauren-mccarthy.com/p5-js and
https://p5js.org/. However, most of the limitations I talk about here still apply to sketches
made with the current version of p5.js.

8 ¶



mentations as a different material and presenting screenshots of them as
was done for the Flash and C++ examples, the “restoration” maintains the
illusion of a “permanence” to the processing sketches, placing them closer
to those imagined “software structures” than to “retrograde” technologies
like Java or an out-dated browser. In addition the “adaptation” elides the
work of the development and subsequent implementation of the then re-
cently standardised canvas element,11 as well as that of the creation of the
p5.js library.

ImageMagick
In 2007, I attended a book launch of Processing: A Programming Hand-
book for Visual Designers and Artists. Earlier in the day, I had bought an-
other technical book, ImageMagick Tricks: Web Image Effects from the
Command Line and PHP, by Sohail Salehi.12 While waiting for the presen-
tation to begin, I met Casey Reas at the back of the room. He was curious
about the book I had with me and looked briefly at it. He had never heard
of ImageMagick.

ImageMagick started with a request from my DuPont supervisor,
Dr. David Pensak, to display computer-generated images on a

11 https://html.spec.whatwg.org/multipage/canvas.html\#the-canvas-element
12 Sohail Salehi, ImageMagick Tricks: Web Image Effects from the Command Line and PHP

(Birmingham: Packt Publishing, 2006).

¶ 9



monitor only capable of showing 256 unique colors simultane-
ously. In 1987, monitors that could display 24-bit true color im-
ages were rare and quite expensive. There were a plethora of
chemists and biologists at DuPont, but very were few computer
scientists to confer with. Instead, I turned to Usenet for help, and
posted a request for an algorithm to reduce 24-bit images to 256
colors. Paul Raveling of the USC Information Sciences Institute
responded, with not only a solution, but one that was already in
source code and available from USC’s FTP [file transfer protocol]
site. Over the course of the next few years, I had frequent oppor-
tunities to get help with other vexing computer science problems
I encountered in the course of doing my job at DuPont. Eventu-
ally I felt compelled to give thanks for the help I received from the
knowledgeable folks on Usenet. I decided to freely release the
image processing tools I developed to the world so that others
could benefit from my efforts.13

ImageMagick, first released in 1990, is a popular free software tool that’s
often referred to as a Swiss Army knife due to its ability to convert between
hundreds of different image formats, and for the many built-in features to
filter, manipulate, and generate images. Thanks to the software being “not
chemically or biologically based,” Cristy was able to release ImageMagick
as free software (echoing the way the UNIX operating system became free
software due to its marginality to the interests of Bell Labs). The software
is full of particularities. For instance, there are a number of built-in images,
including a wizard (the mascot of the software) seated at a drawing table
contemplating an image of the Mona Lisa.

ImageMagick is a command line tool, designed to be used via tex-
tual commands. The typical usage of ImageMagick is to take one image
as input, applying one or more transformations to it, and output a new im-
age. In this way the tool can be used repeatedly in so-called “pipelines,” or
otherwise composed together in structures called (shell) scripts. In these
scripts, ImageMagick commands can be mixed with other commands from
any software installed on the user’s computer that also provides a com-
mand line interface.

Salehi’s book directly reflects the structure of ImageMagick, with chap-
ters organised around various incorporated “tools”: convert, mogrify, com-
posite, montage, identify, display, conjure. The examples are practical:
creating logos, or adding captions or a border to an image. One exam-

13 John Cristy, “History,” ImageMagick website. Retrieved from Internet Archive, October 28,
2021, https://web.archive.org/web/20161029234747/http://www.imagemagick.org/script/
history.php.

10 ¶



ple renders the word “Candy” with colourful stripes. Another series of ex-
amples duplicates and inverts the image and text of classical Persian poet
Hafez to create a kind of playing card. Another example uses ImageMagick
in conjunction with PHP and HTML to produce an online “e-card maker”: a
sequence of commands is demonstrated to render the text “No More War”
(in a dripping paint font), deform it, and project it onto the side of a chess
piece.

¶ 11



In another extended example, a flag is constructed in steps. Rather than
approaching the project as drawing geometric forms on a canvas, Salehi
uses the diversity of ImageMagick’s manipulations, performing a series of
commands whose textual names invoke a sense of physical construction:
blocks of colour are skewed, sheared, cropped, flipped, flopped, and finally
spliced (with “gravity” set to center). The approach creates a number of
intermediate images, thus creating the digital equivalents of “cuttings” or
leftover materials in the process.

By modifying the first step to use an image, 14 I produced the following
(intermediate) results:

14 Image: https://commons.wikimedia.org/wiki/File:Boris_Johnson_official_portrait_
(cropped).jpg, Ben Shread / Cabinet Office, UK Open Government Licence v3.0
(OGL v.3)

12 ¶



Constructivism and
the bricoleur

In the 1920s, Russian avant-gardist El Lissitsky moved to Berlin and pro-
duced work that was highly influential to the then-nascent Bauhaus. In
1923, Lissitsky illustrated a publication of poems by friend Vladimir Ma-
jakovskij. In it he created graphical forms by mixing typographic elements
with geometric forms created by (mis-)using spacing or “blind” elements,
typically used to create negative/unprinted space between lines of type,
as positives producing geometric forms. This style, sometimes called con-
structivism, was part of an effort to make a radical break from traditional
styles of typographic layout and illustration using the means then available
for print. The book is notable for its interactivity via iconic tabbed pages.

For the Voice, book designed by El Lissitzky. Image from the
archive of Guttorm Guttormsgaard. Used with permission. https://arkiv.
guttormsgaardsarkiv.no/node/19/item/39

Constructivism is also the name given to the pedagogic project associ-
ated with Seymour Papert. In the 1970s, Papert co-developed a peda-
gogy for teaching children mathematics and programming based on the
LOGO programming language. Part of the system was a virtual robotic
turtle that could be programmed to draw figures. The system, known as
Turtle graphics, had commands that directly addressed the “turtle” to draw

¶ 13



shapes while moving: forward, turn left, turn right, pen up, pen down.

The process reminds one of tinkering: learning consists of build-
ing up a set of materials and tools that one can handle and ma-
nipulate. Perhaps most central of all, it is a process of working
with what you’ve got. …. This is a science of the concrete, where
the relationships between natural objects in all their combinations
and recombinations provide a conceptual vocabulary for building
scientific theories. Here I am suggesting that in the most funda-

14 ¶



mental sense, we, as learners, are all bricoleurs.15

Papert described the pedagogic project of LOGO in book titledMindstorms.
In a key example, Papert describes how students can be taught about cir-
cles by imagining (or better yet themselves enacting) the turtle repeatedly
performing the sequence “go forward a little, turn a little.” He contrasts
this with the formal equation of a circle (x2 + y2 = r2) typically taught in an
elementary school geometry class.16

TO CIRCLE REPEAT [FORWARD 1 RIGHT 1]

In a powerful central visual sequence, Mindstorms presents a series of
illustrations showing the screen output of code alongside a running dia-
logue. The conversation starts with a proposition to draw a flower like one
sketched on paper. First they consider what programs they might already
have to make use of, in this case they have a procedure to draw a quarter
circle. Through a series of steps, mistakes are made, plans are adjusted
and retried, and happy accidents lead to discoveries (it’s a bird!). In the
process the “ends become means” and a new tool is put to use to create
a garden, and then, incorporating the “bug,” a flock of flying birds.

In Belgium, where I live “brico” is the French language equivalent to

15 Seymour Papert,Mindstorms: Children, Computers, and Powerful Ideas (Cambridge: MIT
Press, 1980), 173.

16 Papert, Mindstorms, 173.

¶ 15



“DIY” and is often used in a derogatory sense to indicate that something
is made in an amateurish way. Papert is borrowing the term from Claude
Lévi-Strauss, who first used the term in an anthropological context hypoth-
esising how “universal” knowledge might form from myth and fragmentary
cultural knowledge.17

For Papert, bricolage exhibits a quality whereby informal methods not
only appeal to “common sense” but also engage more profoundly with the
materiality of the subject than would a formal approach. In the case of
the circle, the “turtle” method is not only a way for the student to imagine
the problem physically, it also relates to methods of differential calculus,
something the algebraic formulation misses completely. In hacker circles,
bricolage is evident in an approach of embracing “glue code” and “duct
tape” methods, like the pipeline, that allow different systems to be “hacked”
together to do useful (new) things.

Misplaced concretism and a fem-
inist method

Alfred North Whitehead, writing on the sciences, established an influen-
tial idea of a “fallacy of misplaced concreteness.” The idea is that mak-
ing abstractions, such as what happens when a particular phenomenon
is named, is a simplification that works by suppressing “what appear to

17 Claude Lévi-Strauss, “The Science of the Concrete,” in The Savage Mind (Chicago: Uni-
versity of Chicago Press, 1966), Chapter 1.

16 ¶



be irrelevant details.”18 In Media Ecologies, Matthew Fuller extends this
thinking to consider technical standards as “a material instantiation” of
Whitehead’s misplaced concreteness, and considers how technical de-
vices through a process of objectification “expect in advance the results
that they obtain.”19

Susan Leigh Star takes Whitehead’s “misplaced concretism” and pro-
poses a feminist methodology specific to information technology.20 Her
essay develops the idea of “standards” as one type of “boundary object,”
which she describes as:

[…] those scientific objects which both inhabit several communi-
ties of practice and satisfy the information requirements of each
of them. Boundary objects are thus objects which are both plas-
tic enough to adapt to local need and common identity across
sites.21

She cites Donna Haraway, who wonders in A Cyborg Manifesto:

How do I then act the bricoleur that we’ve all learned to be in var-
ious ways, without being a colonizer…. How do you keep fore-
grounded the ironic and iffy things you’re doing and still do them
seriously […]22

Star draws on a tradition of diverse feminist thinking through the “articu-
lation of multiplicity, contradiction, and partiality, while standing in a politi-
cally situated, moral collective” to synthesise and propose what she calls
the important attributes of a feminist method:

• experiential and collective basis;
• processual nature;
• honouring contradiction and partialness;
• situated historicity with great attention to detail and specificity;
• the simultaneous application of all of these points.23

18 Alfred North Whitehead, Science and the Modern World (New York: Free Press,
1967), retrieved from Internet Archive, October 28, 2021, https://archive.org/details/
sciencemodernwor00alfr/page/52/mode/2up.

19 Matthew Fuller, Media Ecologies (Cambridge: MIT Press, 2005), 127, 104.
20 Susan Leigh Star, “Misplaced Concretism and Concrete Situations: Feminism, Method,

and Information Technology” (1994), in Boundary Objects and Beyond:Working with Leigh
Star, ed. Geoffrey C. Bowker et al, (Cambridge: MIT Press, 2016), 143–168.

21 Leigh Star, “Misplaced Concretism and Concrete Situations,”157.
22 Donna Haraway, “A Cyborg Manifesto,” in Simians, Cyborgs, and Women: The Reinven-

tion of Nature (New York: Routledge, 1991), quoted in Leigh Star, “Misplaced Concretism
and Concrete Situations,”148.

23 Leigh Star, “Misplaced Concretism and Concrete Situations, 148–149.

¶ 17



As a teacher, I enjoy using ImageMagick, and other tools like it, in my
teaching as it embodies collectivity from its origins: as a way to give back
to a community sharing code over Usenet; through its continued devel-
opment by multiple authors; and its relation to the larger free software
community as an invaluable toolbox for extremely diverse practices. I find
the experiential in ImageMagick’s highly flexible command line interface it-
self also an example of honouring contradiction and partialness, with often
more than one way to express the same transformation. The processual
is implicit in its construction as a tool of transformation, encouraging an
exploratory, iterative approach to composing transformations to arrive at a
desired outcome, often leading to misusage and errors that can be happy
accidents and lead one to reconsider one’s goals. Finally, in its extreme
support of hundreds of different formats, ImageMagick’s use often leads to
the discovery and exploration of diverse image formats, each with related
practices and histories.

In contrast, as a pedagogic project, I find Processing actively uninter-
ested in its own underlying materiality, aspiring instead to a kind of dis-
embodied and bland universality. Students are encouraged to explore the
“world at large” by adding additional layers of technology in the form of
sensors, rather than considering all the ways the technologies they use are
already engaged with the world. The project’s “neutral” aesthetics, while
dimly echoing a once-radical Bauhaus aesthetic, ignore the larger peda-
gogic program of the historical Bauhaus’s engagement and experimenta-
tion with the materials of its contemporary, technical production.

A concatenation of operations of misplaced concreteness thus
allow the gaps, overlaps, and voids in the interrelated capacities
of such systems to construct a more “accurate” account of its own
operations.24

Combining Fuller’s recipe for critical media engagement and Leigh Star’s
feminist methods suggests what could be called a vernacular approach to
teaching with computational tools that:

• rejects the illusory construction of an isolated artist sitting at a blank
canvas creating works from scratch, but rather sees coding practices as
situated, social and collective;

• rejects the fantasy of negligible time or unlimited storage, working in-
stead within the constraints of resources at hand;

• supports conversational approaches where work is produced in steps

24 Fuller, Media Ecologies, 104.

18 ¶



producing intermediate results;
• embraces unexpected outcomes as a way of discovering new methods;
• does not isolate or reject specialised knowledge but rather builds bridges
to allow different kinds of knowledge to interoperate, aiding learners in
eventually exploring adjacencies;

• is suspicious of minimalism and simplifications and considers how such
reductions embody particular values which one might want to oppose or
do otherwise;

• embraces the materiality and historicity of computation;
• rejects the false neutrality of the seamless universal design solution,
instead tearing open seams, proudly displaying glitches and gaps;

• embraces tips and tricks of specific tools, in specific contexts;
• rejects a notion of digital art as the reproduction of surfaces, and instead
situates itself within the contingencies of existing systems, working with
technology as boundary objects as a means of bridging diverse com-
munities of practice.

¶ 19




