From 91026187b2ac7e717623d0fac719e4feb43d5a20 Mon Sep 17 00:00:00 2001 From: manetta Date: Tue, 1 Dec 2020 16:49:30 +0100 Subject: [PATCH] many things --- Makefile | 3 +- ...Decker-how_to_build_a_low_tech_internet.md | 715 ++++++++++++++++++ .../Essays/Mel-Hogan_Pandemics-Dark-Cloud.md | 5 +- .../Mel-Hogan_Pandemics-Dark-Cloud.pdf.html | 34 - content/Essays/Re-Centralization-of-AI.md | 398 ++++++++++ ...org-infrastructure-mega-corridors.pdf.html | 11 - content/Essays/zabala_warning.pdf.html | 58 -- pelicanconf.py | 4 +- themes/basic/static/css/print.css | 8 +- themes/basic/templates/base.html | 2 +- 10 files changed, 1123 insertions(+), 115 deletions(-) create mode 100644 content/Essays/Kris_De_Decker-how_to_build_a_low_tech_internet.md delete mode 100644 content/Essays/Mel-Hogan_Pandemics-Dark-Cloud.pdf.html create mode 100644 content/Essays/Re-Centralization-of-AI.md delete mode 100644 content/Essays/recommon-org-infrastructure-mega-corridors.pdf.html delete mode 100644 content/Essays/zabala_warning.pdf.html diff --git a/Makefile b/Makefile index 98691ec..0224e66 100644 --- a/Makefile +++ b/Makefile @@ -78,8 +78,9 @@ md2pdf=$(md:%.md=%.pdf) %.pdf: %.md themes/basic/static/css/print.css pandoc -f markdown -t html -c themes/basic/static/css/print.css $< -o $@.html - pandoc -f markdown --pdf-engine=weasyprint -c themes/basic/static/css/print.css $< -o $@ + pandoc --pdf-engine=weasyprint -c themes/basic/static/css/print.css $< -o $@ print: $(md2pdf) + $(shell mv content/Essays/*.html content/print/) $(shell mv content/Essays/*.pdf content/print/) diff --git a/content/Essays/Kris_De_Decker-how_to_build_a_low_tech_internet.md b/content/Essays/Kris_De_Decker-how_to_build_a_low_tech_internet.md new file mode 100644 index 0000000..851b590 --- /dev/null +++ b/content/Essays/Kris_De_Decker-how_to_build_a_low_tech_internet.md @@ -0,0 +1,715 @@ +### How to Build a Low-tech Internet + +Wireless internet access is on the rise in both modern consumer +societies and in the developing world. + +In rich countries, however, the focus is on always-on connectivity and +ever higher access speeds. In poor countries, on the other hand, +connectivity is achieved through much more low-tech, often asynchronous +networks.  + +While the high-tech approach pushes the costs and energy use of the +internet [higher and +higher](https://www.lowtechmagazine.com/2015/10/can-the-internet-run-on-renewable-energy.html), +the low-tech alternatives result in much cheaper and very energy +efficient networks that combine well with renewable power production and +are resistant to disruptions. + +If we want the internet to keep working in circumstances where access to +energy is more limited, we can learn important lessons from alternative +network technologies. Best of all, there\'s no need to wait for +governments or companies to facilitate: we can build our own resilient +communication infrastructure if we cooperate with one another. This is +demonstrated by several community networks in Europe, of which the +largest has more than 35,000 users already. + +[]{#anchor}Picture: A node in the [Scottish Tegola +Network](http://www.tegola.org.uk/hebnet/). + +More than half of the global population does not have access to the +\"worldwide\" web. Up to now, the internet is mainly an urban +phenomenon, especially in \"developing\" countries. Telecommunication +companies are usually reluctant to extend their network outside cities +due to a combination of high infrastructure costs, low population +density, limited ability to pay for services, and an unreliable or +non-existent electricity infrastructure. Even in remote regions of +\"developed\" countries, internet connectivity isn\'t always available. + +Internet companies such as Facebook and Google regularly make headlines +with plans for connecting these remote regions to the internet. Facebook +tries to achieve this with drones, while Google counts on high-altitude +balloons. There are major technological challenges, but the main +objection to these plans is their commercial character. Obviously, +Google and Facebook want to connect more people to the internet because +that would increase their revenues. Facebook especially receives lots of +criticism because their network promotes their own site in particular, +and blocks most other internet applications. \[1\] + +Meanwhile, several research groups and network enthusiasts have +developed and implemented much cheaper alternative network technologies +to solve these issues. Although these low-tech networks have proven +their worth, they have received much less attention. Contrary to the +projects of internet companies, they are set up by small organisations +or by the users themselves. This guarantees an open network that +benefits the users instead of a handful of corporations. At the same +time, these low-tech networks are very energy efficient. + +****WiFi-based Long Distance Networks**** + +Most low-tech networks are based on WiFi, the same technology that +allows mobile access to the internet in most western households. As we +have seen in the previous article, [sharing these devices could provide +free mobile access across densely populated +cities](https://www.lowtechmagazine.com/2015/10/the-4g-network-thats-already-there.html). +But the technology can be equally useful in sparsely populated areas. +Although the WiFi-standard was developed for short-distance data +communication (with a typical range of about 30 metres), its reach can +be extended through modifications of the Media Access Control (MAC) +layer in the networking protocol, and through the use of range extender +amplifiers and directional antennas. \[2\] + +Although the WiFi-standard was developed for short-distance data +communication, its reach can be extended to cover distances of more than +100 kilometres. + +The longest unamplified WiFi link is a 384 km wireless point-to-point +connection between Pico El Águila and Platillón in Venezuela, +established a few years ago. \[3,4\] However, WiFi-based long distance +networks usually consist of a combination of shorter point-to-point +links, each between a few kilometres and one hundred kilometers long at +most. These are combined to create larger, multihop networks. +Point-to-points links, which form the backbone of a long range WiFi +network, are combined with omnidirectional antennas that distribute the +signal to individual households (or public institutions) of a community. + +Picture: A relay with three point-to-point links and three sectoral +antennae. +[Tegola](http://www.tegola.org.uk/howto/network-planning.html). + +Long-distance WiFi links require line of sight to make a connection \-- +in this sense, the technology resembles the [18th century optical +telegraph](https://www.lowtechmagazine.com/2007/12/email-in-the-18.html). +\[5\] If there\'s no line of sight between two points, a third relay is +required that can see both points, and the signal is sent to the +intermediate relay first. Depending on the terrain and particular +obstacles, more hubs may be necessary. \[6\] + +Point-to-point links typically consist of two directional antennas, one +focused on the next node and the other on the previous node in the +network. Nodes can have multiple antennas with one antenna per fixed +point-to-point link to each neighbour. \[7\] This allows mesh routing +protocols that can dynamically select which links to choose for routing +among the available ones. \[8\] + +Long-distance WiFi links require line of sight to make a connection \-- +in this sense, the technology resembles the 18th century optical +telegraph. + +Distribution nodes usually consist of a sectoral antenna (a small +version of the things you see on mobile phone masts) or a conventional +WiFi-router, together with a number of receivers in the community. \[6\] +For short distance WiFi-communication, there is no requirement for line +of sight between the transmitter and the receiver. \[9\] + +To provide users with access to the worldwide internet, a long range +WiFi network should be connected to the main backbone of the internet +using at least one \"backhaul\" or \"gateway node\". This can be a +dial-up or broadband connection (DSL, fibre or satellite). If such a +link is not established, users would still be able to communicate with +each other and view websites set up on local servers, but they would not +be able to access the internet. \[10\] + +****Advantages of Long Range WiFi**** + +Long range WiFi offers high bandwidth (up to 54 Mbps) combined with very +low capital costs. Because the WiFi standard enjoys widespread +acceptance and has huge production volumes, off-the-shelf antennas and +wireless cards can be bought for very little money. \[11\] +Alternatively, components can be put together [from discarded +materials](http://roelof.info/projects/%282014%29Pretty_Fly_For_A_Wifi/) +such as old routers, satellite dish antennas and laptops. Protocols like +WiLDNet run on a 266 Mhz processor with only 128 MB memory, so an old +computer will do the trick. \[7\] + +The WiFi-nodes are lightweight and don\'t need expensive towers \-- +further decreasing capital costs, and minimizing the impact of the +structures to be built. \[7\] More recently, single units that combine +antenna, wireless card and processor have become available. These are +very convenient for installation. To build a relay, one simply connects +such units together with ethernet cables that carry both signal and +power. \[6\] The units can be mounted in towers or slim masts, given +that they offer little windload. \[3\] Examples of suppliers of long +range WiFi components are [Ubiquity](https://www.ubnt.com/), +[Alvarion](http://www.alvarion.com/) and +[MikroTik](http://www.mikrotik.com/), and +[simpleWiFi](https://www.simplewifi.com/). + +Long Range WiFi makes use of unlicensed spectrum and offers high +bandwidth, low capital costs, easy installation, and low power +requirements. + +Long range WiFi also has low operational costs due to low power +requirements. A typical mast installation consisting of two long +distance links and one or two wireless cards for local distribution +consumes around 30 watts. \[6,12\] In several low-tech networks, nodes +are entirely powered by solar panels and batteries. Another important +advantage of long range WiFi is that it makes use of unlicensed spectrum +(2.4 and 5 GHz), and thus avoids negotiations with telecom operators and +government. This adds to the cost advantage and allows basically anyone +to start a WiFi-based long distance network. \[9\] + +****Long Range WiFi Networks in Poor Countries**** + +The first long range WiFi networks were set up ten to fifteen years ago. +In poor countries, two main types have been built. The first is aimed at +providing internet access to people in remote villages. An example is +the Akshaya network in India, which covers the entire Kerala State and +is one of the largest wireless networks in the world. The infrastructure +is built around approximately 2,500 \"computer access centers\", which +are open to the local population \-- direct ownership of computers is +minimal in the region. \[13\] + +Another example, also in India, are the AirJaldi networks which provide +internet access to approximately 20,000 users in six states, all in +remote regions and on difficult terrain. Most nodes in this network are +solar-powered and the distance between them can range up to 50 km or +more. \[14\] In some African countries, local WiFi-networks distribute +internet access from a satellite gateway. \[15,16\] + +A node in the AirJaldi network. Picture: AirJaldi. + +A second type of long distance WiFi network in poor countries is aimed +at providing telemedicine to remote communities. In remote regions, +health care is often provided through health posts scarcely equipped and +attended by health technicians who are barely trained. \[17\] Long-range +WiFi networks can connect urban hospitals with these outlying health +posts, allowing doctors to remotely support health technicians using +high-resolution file transfers and real-time communication tools based +on voice and video. + +An example is the link between Cabo Pantoja and Iquitos in the Loreto +province in Peru, which was established in 2007. The 450 km network +consists of 17 towers which are 16 to 50 km apart. The line connects 15 +medical outposts in remote villages with the main hospital in Iquitos +and is aimed at remote diagnosis of patients. \[17,18\] All equipment is +powered by solar panels. \[18,19\] Other succesful examples of long +range WiFi telemedicine networks have been built in India, Malawi and +Ghana. \[20,21\] + +****WiFi-Based Community Networks in Europe**** + +The low-tech networks in poor countries are set up by NGO\'s, +governments, universities or businesses. In contrast, most of the +WiFi-based long distance networks in remote regions of rich countries +are so-called \"community networks\": the users themselves build, own, +power and maintain the infrastructure. Similar to the shared wireless +approach in cities, reciprocal resource sharing forms the basis of these +networks: participants can set up their own node and connect to the +network (for free), as long as their node also allows traffic of other +members. Each node acts as a WiFi routing device that provides IP +forwarding services and a data link to all users and nodes connected to +it. \[8,22\] + +In a community network, the users themselves build, own, power and +maintain the infrastructure. + +Consequently, with each new user, the network becomes larger. There is +no a-priori overall planning. A community network grows bottom-up, +driven by the needs of its users, as nodes and links are added or +upgraded following demand patterns. The only consideration is to connect +a node from a new participant to an existing one. As a node is powered +on, it discovers it neighbours, attributes itself a unique IP adress, +and then establishes the most appropriate routes to the rest of the +network, taking into account the quality of the links. Community +networks are open to participation to everyone, sometimes according to +an open peering agreement. \[8,9,19,22\] + +Wireless links in the Spanish Guifi network. +[Credit](https://iuliinet.github.io/presentazione_ottobre_2014/img/barcellona.jpg). + +Despite the lack of reliable statistics, community networks seem to be +rather succesful, and there are several large ones in Europe, such as +[Guifi.net](https://guifi.net/) (Spain), [Athens Wireless Metropolitan +Network](http://www.awmn.gr/content.php?s=ce506a41ab245641d6934638c6f6f107) +(Greece), [FunkFeuer](http://www.funkfeuer.at/) (Austria), and +[Freifunk](https://freifunk.net/en/) (Germany). \[8,22,23,24\] The +Spanish network  is the largest WiFi-based long distance network in the +world with more than 50,000 kilometres of links, although a small part +is based on optic fibre links. Most of it is located in the Catalan +Pyrenees, one of the least populated areas in Spain. The network was +initiated in 2004 and now has close to 30,000 nodes, up from 17,000 in +2012. \[8,22\] + +Guifi.net provides internet access to individuals, companies, +administrations and universities. In principle, the network is +installed, powered and maintained by its users, although volunteer teams +and even commercial installers are present to help. Some nodes and +backbone upgrades have been succesfully crowdfunded by indirect +beneficiaries of the network. \[8,22\] + +****Performance of Low-tech Networks**** + +So how about the performance of low-tech networks? What can you do with +them? The available bandwidth per user can vary enormously, depending on +the bandwidth of the gateway node(s) and the number of users, among +other factors. The long-distance WiFi networks aimed at telemedicine in +poor countries have few users and a good backhaul, resulting in high +bandwidth (+ 40 Mbps). This gives them a similar performance to fibre +connections in the developed world. A study of (a small part of) the +Guifi.net community network, which has dozens of gateway nodes and +thousands of users, showed an average throughput of 2 Mbps, which is +comparable to a relatively slow DSL connection. Actual throughput per +user varies from 700 kbps to 8 Mbps. \[25\] + +The available bandwidth per user can vary enormously, depending on the +bandwidth of the gateway node(s) and the number of users, among other +factors + +However, the low-tech networks that distribute internet access to a +large user base in developing countries can have much more limited +bandwidth per user. For example, a university campus in Kerala (India) +uses a 750 kbps internet connection that is shared across 3,000 faculty +members and students operating from 400 machines, where during peak +hours nearly every machine is being used.  + +Therefore, the worst-case average bandwidth available per machine is +approximately 1.9 kbps, which is slow even in comparison to a dial-up +connection (56 kbps). And this can be considered a really good +connectivity compared to typical rural settings in poor countries. +\[26\] To make matters worse, such networks often have to deal with an +intermittent power supply. + +Under these circumstances, even the most common internet applications +have poor performance, or don\'t work at all. The communication model of +the internet is based on a set of network assumptions, called the TCP/IP +protocol suite. These include the existence of a bi-directional +end-to-end path between the source (for example a website\'s server) and +the destination (the user\'s computer), short round-trip delays, and low +error rates. + +Many low-tech networks in poor countries do not comform to these +assumptions. They are characterized by intermittent connectivity or +\"network partitioning\" \-- the absence of an end-to-end path between +source and destination \-- long and variable delays, and high error +rates. \[21,27,28\] + +****Delay-Tolerant Networks**** + +Nevertheless, even in such conditions, the internet could work perfectly +fine. The technical issues can be solved by moving away from the +always-on model of traditional networks, and instead design networks +based upon asynchronous communication and intermittent connectivity. +These so-called \"delay-tolerant networks\" (DTNs) have their own +specialized protocols overlayed on top of the lower protocols and do not +utilize TCP. They overcome the problems of intermittent connectivity and +long delays by using store-and-forward message switching. + +Information is forwarded from a storage place on one node to a storage +place on another node, along a path that *eventually* reaches its +destination. In contrast to traditional internet routers, which only +store incoming packets for a few milliseconds on memory chips, the nodes +of a delay-tolerant network have persistent storage (such as hard disks) +that can hold information indefinitely. \[27,28\] + +Delay-tolerant networks combine well with renewable energy: solar panels +or wind turbines could power network nodes only when the sun shines or +the wind blows, eliminating the need for energy storage. + +Delay-tolerant networks don\'t require an end-to-end path between source +and destination. Data is simply transferred from node to node. If the +next node is unavailable because of long delays or a power outage, the +data is stored on the hard disk until the node becomes available again. +While it might take a long time for data to travel from source to +destination, a delay-tolerant network ensures that it will eventually +arrive. + +Delay-tolerant networks further decrease capital costs and energy use, +leading to the most efficient use of scarce resources. They keep working +with an intermittent energy supply and they combine well with renewable +energy sources: solar panels or wind turbines could power network nodes +only when the sun shines or the wind blows, eliminating the need for +energy storage. + +****Data Mules**** + +Delay-tolerant networking can take surprising forms, especially when +they take advantage of some non-traditional means of communication, such +as \"data mules\". \[11,29\] In such networks, conventional +transportation technologies \-- buses, cars, motorcycles, trains, boats, +airplanes \-- are used to ferry messages from one location to another in +a store-and-forward manner. + +Examples are DakNet and KioskNet, which use buses as data mules. +\[30-34\] In many developing regions, rural bus routes regularly visit +villages and towns that have no network connectivity. By equipping each +vehicle with a computer, a storage device and a mobile WiFi-node on the +one hand, and by installing a stationary WiFi-node in each village on +the other hand, the local transport infrastructure can substitute for a +wireless internet link. \[11\] + +Picture: AirJaldi. + +Outgoing data (such as sent emails or requests for webpages) is stored +on local computers in the village until the bus comes withing range. At +this point, the fixed WiFi-node of the local computer automatically +transmits the data to the mobile WiFi-node of the bus. Later, when the +bus arrives at a hub that is connected to the internet, the outgoing +data is transmitted from the mobile WiFi-node to the gateway node, and +then to the internet. Data sent to the village takes the opposite route. +The bus \-- or data \-- driver doesn\'t require any special skills and +is completely oblivious to the data transfers taking place. He or she +does not need to do anything other than come in range of the nodes. +\[30,31\] + +In a data mules network, the local transport infrastructure substitutes +for a wireless internet link. + +The use of data mules offers some extra advantages over more +\"sophisticated\" delay-tolerant networks. A \"drive-by\" WiFi network +allows for small, low-cost and low-power radio devices to be used, which +don\'t require line of sight and consequently no towers \-- further +lowering capital costs and energy use compared to other low-tech +networks. \[30,31,32\] + +The use of short-distance WiFi-links also results in a higher bandwidth +compared to long-distance WiFi-links, which makes data mules better +suited to transfer larger files. On average, 20 MB of data can be moved +in each direction when a bus passes a fixed WiFi-node. \[30,32\] On the +other hand, latency (the time interval between sending and receiving +data) is usually higher than on long-range WiFi-links. A single bus +passing by a village once a day gives a latency of 24 hours. + +****Delay-Tolerant Software**** + +Obviously, a delay-tolerant network (DTN) \-- whatever its form \-- also +requires new software: applications that function without a connected +end-to-end networking path. \[11\] Such custom applications are also +useful for synchronous, low bandwidth networks. Email is relatively easy +to adapt to intermittent connectivity, because it\'s an asynchronous +communication method by itself. A DTN-enabled email client stores +outgoing messages until a connection is available. Although emails may +take longer to reach their destination, the user experience doesn\'t +really change. + +A Freifunk WiFi-node is installed in Berlin, Germany. Picture:[ +Wikipedia +Commons](https://upload.wikimedia.org/wikipedia/commons/5/51/Freifunk-Initiative_in_Berlin-Kreuzberg.jpg). + +Browsing and searching the web requires more adaptations. For example, +most search engines optimize for speed, assuming that a user can quickly +look through the returned links and immediately run a second modified +search if the first result is inadequate. However, in intermittent +networks, multiple rounds of interactive search would be impractical. +\[26,35\] Asynchronous search engines optimize for bandwith rather than +response time. \[26,30,31,35,36\] For example, RuralCafe desynchronizes +the search process by performing many search tasks in an offline manner, +refining the search request based on a database of similar searches. The +actual retrieval of information using the network is only done when +absolutely necessary. + +Many internet applications could be adapted to intermittent networks, +such as webbrowsing, email, electronic form filling, interaction with +e-commerce sites, blogsoftware, large file downloads, or social media. + +Some DTN-enabled browsers download not only the explicitly requested +webpages but also the pages that are linked to by the requested pages. +\[30\] Others are optimized to return low-bandwidth results, which are +achieved by filtering, analysis, and compression on the server site. A +similar effect can be achieved through the use of a service like +[Loband](http://www.loband.org/loband/), which strips webpages of +images, video, advertisements, social media buttons, and so on, merely +presenting the textual content. \[26\] + +Browsing and searching on intermittent networks can also be improved by +local caching (storing already downloaded pages) and prefetching +(downloading pages that might be retrieved in the future). \[206\] Many +other internet applications could also be adapted to intermittent +networks, such as electronic form filling, interaction with e-commerce +sites, blogsoftware, large file downloads, social media, and so on. +\[11,30\] All these applications would remain possible, though at lower +speeds. + +****Sneakernets**** + +Obviously, real-time applications such as internet telephony, media +streaming, chatting or videoconferencing are impossible to adapt to +intermittent networks, which provide only asynchronous communication. +These applications are also difficult to run on synchronous networks +that have limited bandwidth. Because these are the applications that are +in large part responsible for the growing energy use of the internet, +one could argue that their incompatibility with low-tech networks is +actually a good thing (see the [previous +article](https://www.lowtechmagazine.com/2015/10/can-the-internet-run-on-renewable-energy.html)). + +Furthermore, many of these applications could be organized in different +ways. While real-time voice or video conversations won\'t work, it\'s +perfectly possible to send and receive voice or video messages. And +while streaming media can\'t happen, downloading music albums and video +remains possible. Moreover, these files could be \"transmitted\" by the +most low-tech internet technology available: a sneakernet. In a +sneakernet, digital data is \"wirelessly\" transmitted using a storage +medium such as a hard disk, a USB-key, a flash card, or a CD or DVD. +Before the arrival of the internet, all computer files were exchanged +via a sneakernet, using tape or floppy disks as a storage medium. + +Stuffing a cargo train full of digital storage media would beat any +digital network in terms of speed, cost and energy efficiency. Picture: +Wikipedia Commons. + +Just like a data mules network, a sneakernet involves a vehicle, a +messenger on foot, or an animal (such as a [carrier +pigeon](https://www.lowtechmagazine.com/2009/02/sneakernet-beats-internet.html)). +However, in a sneakernet there is no automatic data transfer between the +mobile node (for instance, a vehicle) and the stationary nodes (sender +and recipient). Instead, the data first have to be transferred from the +sender\'s computer to a portable storage medium. Then, upon arrival, the +data have to be transferred from the portable storage medium to the +receiver\'s computer. \[30\] A sneakernet thus requires manual +intervention and this makes it less convenient for many internet +applications. + +There are exceptions, though. For example, a movie doesn\'t have to be +transferred to the hard disk of your computer in order to watch it. You +play it straight from a portable hard disk or slide a disc into the +DVD-player. Moreover, a sneakernet also offers an important advantage: +of all low-tech networks, it has the most bandwidth available. This +makes it perfectly suited for the distribution of large files such as +movies or computer games. In fact, when very large files are involved, a +sneakernet even beats the fastest fibre internet connection. At lower +internet speeds, sneakernets can be advantageous for much smaller files. + +Technological progress will not lower the advantage of a sneakernet. +Digital storage media evolve at least as fast as internet connections +and they both improve communication in an equal way. + +****Resilient Networks**** + +While most low-tech networks are aimed at regions where the alternative +is often no internet connection at all, their usefulness for +well-connected areas cannot be overlooked. The internet as we know it in +the industrialized world is a product of an abundant energy supply, a +robust electricity infrastructure, and sustained economic growth. This +\"high-tech\" internet might offer some fancy advantages over the +low-tech networks, but it cannot survive if these conditions change. +This makes it extremely vulnerable. + +The internet as we know it in the industrialized world is a product of +an abundant energy supply, a robust electricity infrastructure, and +sustained economic growth. It cannot survive if these conditions change. + +Depending on their level of resilience, low-tech networks can remain in +operation when the supply of fossil fuels is interrupted, when the +electricity infrastructure deteriorates, when the economy grinds to a +halt, or if other calamities should hit. Such a low-tech internet would +allow us to surf the web, send and receive e-mails, shop online, share +content, and so on. Meanwhile, data mules and sneakernets could serve to +handle the distribution of large files such as videos. Stuffing a cargo +vessel or a train full of digital storage media would beat any digital +network in terms of speed, cost and energy efficiency. And if such a +transport infrastructure would no longer be available, we could still +rely on messengers on foot, [cargo +bikes](https://www.lowtechmagazine.com/2014/05/modular-cargo-cycles.html) +and [sailing vessels](https://www.lowtechmagazine.com/sailing-ships/). + +Such a hybrid system of online and offline applications would remain a +very powerful communication network \-- unlike anything we had even in +the late twentieth century. Even if we envision a doom scenario in which +the wider internet infrastructure would disintegrate, isolated low-tech +networks would still be very useful local and regional communication +technologies. Furthermore, they could obtain content from other remote +networks through the exchange of portable storage media. The internet, +it appears, can be as low-tech or high-tech as we can afford it to be. + +Kris De Decker (edited by [Jenna +Collett](https://www.linkedin.com/pub/jenna-collett/1a/925/b3)) + +This article has been translated into +[Spanish](https://solar.lowtechmagazine.com/es/2015/10/how-to-build-a-low-tech-internet.html). + +****Sources & Notes:**** + +DIY: [Wireless networking in the developing +world](http://wndw.net/book.html#readBook) (Third Edition) is a free +book about designing, implementing and maintaining low-cost wireless +networks. Available in English, French, and Spanish. + +\[1\] [Connecting the unwired world with balloons, satellites, lasers & +drones](https://tech.slashdot.org/story/15/09/03/214256/connecting-the-unwired-world-with-balloons-satellites-lasers-drones), +Slashdot, 2015 + +\[2\] [A QoS-aware dynamic bandwidth allocation scheme for multi-hop +WiFi-based long distance +networks](https://link.springer.com/article/10.1186%2Fs13638-015-0352-z#/page-1), +Iftekhar Hussain et al., 2015 + +\[3\] [Long-distance, Low-Cost Wireless Data +Transmission](http://www.ursi.org/files/RSBissues/RSB_339_2011_12.pdf) +(PDF), Ermanno Pietrosemoli, 2011 + +\[4\] This link could only be established thanks to the height of the +endpoints (4,200 and 1,500 km) and the flatness of the middle ground. +The curvature of the Earth makes longer point-to-point WiFi-links +difficult to achieve because line of sight between two points is +required. + +\[5\] Radio waves occupy a volume around the optical line, which must be +unemcumbered from obstacles. This volume is known as the Fresnel +ellipsoid and its size grows with the distance between the two end +points and with the wavelength of the signal, which is in turn inversely +proportional to the frequency. Thus, it is required to leave extra +\"elbow room\" for the Fresnel zone. \[9\] + +\[6\] [A Brief History of the Tegola +Project](http://www.tegola.org.uk/tegola-history.html), Tegola Project, +retrieved October 2015 + +\[7\] [WiLDNet: Design and Implementation of High Performance WiFi based +Long Distance +Networks](http://tier.cs.berkeley.edu/docs/wireless/wild_multihop.pdf) +(PDF), Rabin Patra et al., 2007 + +\[8\] [Topology Patterns of a Community Network: +Guifi.net](http://dsg.ac.upc.edu/sites/default/files/1569633605.pdf) +(PDF), Davide Vega et al., 2012 + +\[9\] [Global Access to the Internet for All, internet +draft](https://trac.tools.ietf.org/group/irtf/trac/wiki/gaia), Internet +Engineering Task Force (IETF), 2015 + +\[10\] This is what happened to Afghanistan\'s JLINK network when +[funding for the network\'s satellite link ran dry in +2012](https://www.wired.com/2012/05/jlink/). + +\[11\] [The case for technology in developing +regions](https://www.cs.cmu.edu/~mattkam/lab/publications/Computer2005.pdf) +(PDF), Eric Brewer et al., 2005 + +\[12\] [Beyond Pilots: Keeping Rural Wireless Networks +Alive](https://www.usenix.org/legacy/event/nsdi08/tech/full_papers/surana/surana.pdf) +(PDF), Sonesh Surana et al., 2008 + +\[13\] + +\[14\] + +\[15\] [VillageCell: Cost Effective Cellular Connectivity in Rural +Areas](http://www.cs.bham.ac.uk/~pejovicv/docs/Anand12ICTD.pdf) (PDF), +Abhinav Anand et al., 2012 + +\[16\] [Deployment and Extensio of a Converged WiMAX/WiFi Network for +Dwesa Community Area South +Africa](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.452.7357&rep=rep1&type=pdf) +(PDF), N. Ndlovu et al., 2009 + +\[17\] \"[A telemedicine network optimized for long distances in the +Amazonian jungle of +Peru](http://www.ehas.org/wp-content/uploads/2012/01/Extremecomm_sig_ISBN.pdf)\" +(PDF), Carlos Rey-Moreno, ExtremeCom \'11, September 2011 + +\[18\] \"[Telemedicine networks of EHAS Foundation in Latin +America](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4197650/)\", +Ignacio Prieto-Egido et al., in \"Frontiers in Public Health\", October +15, 2014. + +\[19\] \"[The design of a wireless solar-powered router for rural +environments isolated from health +facilities](https://eciencia.urjc.es/bitstream/handle/10115/2293/THE%20DESIGN%20OF%20A%20WIRELESS%20SOLAR-POWERED-2008.pdf?sequence=1)\" +(PDF), Francisco Javier Simo Reigadas et al., in \"IEEE Wireless +Communications\", June 2008. + +\[20\] [On a long wireless link for rural telemedicine in +Malawi](http://users.ictp.it/~mzennaro/Malawi.pdf) (PDF), M. Zennaro et +al., 2008 + +\[21\] [A Survey of Delay- and Disruption-Tolerant Networking +Applications](http://www.jie-online.org/index.php/jie/article/view/91), +Artemios G. Voyiatzis, 2012 + +\[22\] [Supporting Cloud Deployment in the Guifi Community +Network](https://www.sics.se/~amir/files/download/papers/guifi.pdf) +(PDF), Roger Baig et al., 2013 + +\[23\] [A Case for Research with and on Community +Networks](http://www.sigcomm.org/sites/default/files/ccr/papers/2013/July/2500098-2500108.pdf) +(PDF), Bart Braem et.al, 2013 + +\[24\] There are smaller networks in Scotland +([Tegola](http://www.tegola.org.uk/)), Slovenia ([wlan +slovenija](https://wlan-si.net/)), Belgium ([Wireless +Antwerpen](http://www.wirelessantwerpen.be/)), and the Netherlands +([Wireless Leiden](https://www.wirelessleiden.nl/)), among others. +Australia has [Melbourne Wireless](http://melbourne.wireless.org.au/). +In Latin America, numerous examples exists, such as [Bogota +Mesh](https://www.facebook.com/BogotaMesh) (Colombia) and [Monte Video +Libre](http://picandocodigo.net/2008/montevideolibre-redes-libres-en-montevideo/) +(Uruguay). Some of these networks are interconnected. This is the case +for the Belgian and Dutch community networks, and for the Slovenian and +Austrian networks. \[8,22,23\] + +\[25\] [Proxy performance analysis in a community wireless +network](http://upcommons.upc.edu/handle/2099.1/19710), Pablo Pitarch +Miguel, 2013 + +\[26\] [RuralCafe: Web Search in the Rural Developing +World](http://www.ambuehler.ethz.ch/CDstore/www2009/proc/docs/p411.pdf) +(PDF), Jay Chen et al., 2009 + +\[27\] [A Delay-Tolerant Network Architecture for Challenged +Networks](http://www.kevinfall.com/seipage/papers/p27-fall.pdf) (PDF), +Kevin Fall, 2003 + +\[28\] [Delay- and Disruption-Tolerant Networks (DTNs) \-- A Tutorial +(version +2.0)](http://ipnsig.org/wp-content/uploads/2012/07/DTN_Tutorial_v2.04.pdf) +(PDF), Forrest Warthman, 2012 + +\[29\] [Healthcare Supported by Data Mule Networks in Remote Communities +of the Amazon +Region](http://www.hindawi.com/journals/isrn/2014/730760/), Mauro +Margalho Coutinho et al., 2014 + +\[30\] [First Mile Solutions\' Daknet Takes Rural Communities +Online](http://www.firstmilesolutions.com/documents/FMS_Case_Study.pdf) +(PDF), Carol Chyau and Jean-Francois Raymond, 2005 + +\[31\] [DakNet: A Road to Universal Broadband +Connectivity](http://courses.media.mit.edu/2003fall/de/DakNet-Case.pdf) +(PDF), Amir Alexander Hasson et al., 2003 + +\[32\] [DakNet: Architecture and Connectivity in Developing +Nations](http://ijpret.com/publishedarticle/2015/4/IJPRET%20-%20ECN%20115.pdf) +(PDF), Madhuri Bhole, 2015 + +\[33\] [Delay Tolerant Networks and Their +Applications](http://www.citeulike.org/user/tnhh/article/13517347), +Longxiang Gao et al., 2015 + +\[34\] [Low-cost communication for rural internet kiosks using +mechanical +backhaul](https://people.csail.mit.edu/matei/papers/2006/mobicom_kiosks.pdf), +A. Seth et al., 2006 + +\[35\] [Searching the World Wide Web in Low-Connectivity +Communities](http://tek.sourceforge.net/papers/tek-www02.pdf) (PDF), +William Thies et al., 2002 + +\[36\] [Slow Search: Information Retrieval without Time +Constraints](https://www.cs.cmu.edu/~yubink/hcir2013.pdf) (PDF), Jaime +Teevan, 2013 + +\[37\] [Potential for Collaborative Caching and Prefetching in +Largely-Disconnected +Villages](http://mrmgroup.cs.princeton.edu/papers/isaacman-winsdr503.pdf) +(PDF), Sibren Isaacman et al., 2008 + + -- + -- + +Posted on October 26, 2015 at 12:26 AM in [Access to +information](https://www.lowtechmagazine.com/copyright_and_access_to_information/), +[Communications](https://www.lowtechmagazine.com/communications/), +[Cover story](https://www.lowtechmagazine.com/cover-story/), +[DIY](https://www.lowtechmagazine.com/diy/), +[Internet](https://www.lowtechmagazine.com/internet/), [Wireless +technology](https://www.lowtechmagazine.com/wireless_technology/) \| +[Permalink](https://www.lowtechmagazine.com/2015/10/how-to-build-a-low-tech-internet.html) diff --git a/content/Essays/Mel-Hogan_Pandemics-Dark-Cloud.md b/content/Essays/Mel-Hogan_Pandemics-Dark-Cloud.md index 242a8ae..67ce2a3 100644 --- a/content/Essays/Mel-Hogan_Pandemics-Dark-Cloud.md +++ b/content/Essays/Mel-Hogan_Pandemics-Dark-Cloud.md @@ -1,6 +1,3 @@ -Title: 'The Pandemic's Dark Cloud' -Author: Mel Hogan - "The Pandemic\'s Dark Cloud" was written in November 2020 as a reflection on the relationship between the pandemic and environmental media, with a focus on "the cloud" and its undergirding networked @@ -21,7 +18,7 @@ McLuhan lecture at the Canadian Embassy in Berlin, and giving a plenary at transmediale 2020.\ \@mel\_hogan / melhogan.com / mhogan\@ucalgary.ca* -# The Pandemic\'s Dark Cloud by Mél Hogan +**The Pandemic\'s Dark Cloud **by Mél Hogan As the pandemic settled into consciousness across the globe, humans devolved. People in countries where the response to COVID-19 was most diff --git a/content/Essays/Mel-Hogan_Pandemics-Dark-Cloud.pdf.html b/content/Essays/Mel-Hogan_Pandemics-Dark-Cloud.pdf.html deleted file mode 100644 index 23afacc..0000000 --- a/content/Essays/Mel-Hogan_Pandemics-Dark-Cloud.pdf.html +++ /dev/null @@ -1,34 +0,0 @@ -

Title: ‘The Pandemic’s Dark Cloud’ Author: Mel Hogan

-

“The Pandemic's Dark Cloud” was written in November 2020 as a reflection on the relationship between the pandemic and environmental media, with a focus on “the cloud” and its undergirding networked infrastructure. The central idea of this piece is to demonstrate the interconnectedness of all things – covid, care, community, nature, ewaste, racism, greed – in both the making and undoing of our modern communication systems.

-

This piece is intended as a provocation, so your thoughts and feelings are very welcomed!

-

Mél Hogan is the Director of the Environmental Media Lab (EML)* and Associate Professor at the University of Calgary, Canada. She is also an Associate Editor of the Canadian Journal of Communication. Career highlights so far include keynoting the 2020 McLuhan lecture at the Canadian Embassy in Berlin, and giving a plenary at transmediale 2020.
-@mel_hogan / melhogan.com / mhogan@ucalgary.ca*

-

The Pandemic's Dark Cloud by Mél Hogan

-

As the pandemic settled into consciousness across the globe, humans devolved. People in countries where the response to COVID-19 was most mismanaged started to snack a lot.1 Pre-sliced packaged charcuterie. Ritz crackers. Oreo cookies. In their growing helplessness, people also sharply increased their consumption of alcohol, especially women in the US.2 For some it was drugs. Those lucky enough to keep their job doubled down on work, staying at their stations or desks for longer hours – part avoidance and part stuckness into systems that could offer no other plan.

-

The dread by now is cumulative. Pick your pain: covid19, white supremacy, climate catastrophe. People are reaching new levels of “doomscrolling” on social media, playing online video games, and “binge-watching” Netflix as ways to pass the time, waiting on the virus to run its course, or for politicians to make a plan. As things shut down, Zoom quickly took over as the way to communicate at a safe social distance. Education quickly became clicking at screens. No more shopping in person meant ordering by way of interfaces. All of these screens more or less allowed things to continue, if not as normal, as a viable alternative in the meantime. It remains to be seen if this online world we’ve adopted so quickly is the new normal, and here to stay, or if it’ll reflect to us the inefficiencies of how we lived before and save us from ourselves. Or, maybe it will call into question the terrible inequities that are only made more evident by this pandemic.

-

By April, the news media were already reporting that lockdowns had meant cleaner air and clearer water.3 Satellite images showed less pollution over China and the US. Animals were found roaming freely in different parts of India.4 “Nature is healing” became a popular meme celebrating the lessening of human impact and nature’s recovery.5 But were the effects of lockdown, or quarantine, of humans being trapped in their homes, and of doing everything online, truly a more sustainable way of going about life? Had the turn to “the cloud” proven to be the weightless way forward? Social isolation and disinformation propagation problems aside, could the internet become a tool to inadvertently save the environment?

-

In thinking of the internet and the many devices connected to it, these account for approximately 2-4% of global greenhouse emissions, which only promise to double by 2025.6 Data centres and vast server farms (where data is stored and transmitted) draw more than 80% of their energy from fossil fuel power stations. Online video alone – porn, Netflix, YouTube, Zoom – generated 60% of the world’s total data flows before covid19 hit. A Google search uses as much energy as cooking an egg or boiling water in an electric kettle.7 Yearly emails for work (and not accounting for spam) have been calculated to be equal in terms of CO2 emissions to driving 320 kilometres.8 These numbers have likely gone up considerably since the pandemic.9 This way of living wasn’t sustainable then, and it certainly isn’t now.

-

There are search engines (eg. Ecosia10) and add-ons (eg. Carbonalyser by The Shift Project,11 green-algorithms.org12) that help measure user impacts on the environment, but these miss addressing the bigger questions – such as moving away from confronting personal use to the systemic, material, and ideological issues baked into the internet. Why is the internet like this? The question is more political than it is purely technological. It’s more emotional, even, than it is political. Because we’ve drifted so far away from understanding nature as inherent to human and non-human wellbeing alike, towards unrelenting and exploitative capitalism and extractivism, it means we now have these massively entangled systems that reinforce one another, generate profit for the very few, but in the end benefit nothing and nobody.13 These systems are harder to abolish or undo, so instead we turn to solutions that lessen their impacts, and we consider the rest inevitable – or worse, natural. We might, for example, shift data centers to cooler climates to save on cooling costs, we might develop more efficient software, we might offer carbon offsetting and plant trees, but none of these technofixes reach the heart of the our current predicament: our solutions and our problems originate from the same short-sighted, greed-driven, competitive, and market-driven agendas that caused this global deadly pandemic in the first place.

-

In 2020, we are generating 50 million tons worldwide of electronic waste, with an annual growth of 5%.14 This means that we produce e-waste at three times the rate that humans reproduce. Much e-waste is toxic and severely impacts land, water, plants, animals, and humans. This damage is permanent. At the other end of the supply chain, fields of wheat and corn have become lakes of toxic sludge to accommodate the rare earth mining industry.15 From Mongolia to China to the Congo, people labour in dangerous conditions, mining through the ore-laden mud to find rare minerals to power our devices. Elsewhere, people work endless shifts to assemble computers, phones, tablets. It should be no surprise then that the internet that connects this all is toxic too, evidenced by both the work of content moderators who filter the internet, and the shady tactics used by Big Tech to evade taxes to get filthy rich off the backs of this global human-powered machine. As Ron Deibert put it recently in his 2020 CBC Massey Lectures, “If we continue on this path of unbridled consumption and planned obsolescence, we are doomed.”16

-

So we can either become extinct from the repercussions of our centuries old destructive neoliberal colonial institutions, as the planet pushes back with more pandemics, storms, and violence, or we can get together and admit to our failures as colonisers. These failures tap into something profound, deeply broken, about what settlers have historically valued and continue to enact. We are living largely in the dark fantasies of ghosts – and these old, settler ideas haunt and break us. We can imagine better. We can make other decisions. We can tune our emotions to move from awareness to anxiety to action. We return public lands to Indigenous peoples. We defund police and dismantle white supremacy. We transform ourselves, and our communication systems will follow.

-
-
-
    -
  1. https://www.convenience.org/Media/Daily/2020/May/1/6-Snack-Sales-Soar-During-Pandemic_Marketing https://news.italianfood.net/2020/04/02/pre-sliced-packaged-charcuterie-partly-offsets-pandemic-blow/ https://www.foodbusinessnews.net/articles/16078-the-snack-trends-predicted-to-persist-post-pandemic

  2. -
  3. https://nypost.com/2020/04/13/americans-are-handling-coronavirus-pandemic-by-binging-on-snacks/ https://www.herworld.com/gallery/life/wellness/overeating-binge-eating-covid19-pandemic-work-home/

  4. -
  5. https://www.nbcnews.com/science/environment/coronavirus-shutdowns-have-unintended-climate-benefits-n1161921

  6. -
  7. https://www.planetofstudents.com/blog/social-awareness/effects-of-lockdown-on-the-environment/

  8. -
  9. https://www.buzzfeednews.com/article/emmanuelfelton/coronavirus-meme-nature-is-healing-we-are-the-virus

  10. -
  11. https://www.bbc.com/future/article/20200305-why-your-internet-habits-are-not-as-clean-as-you-think

  12. -
  13. https://www.theguardian.com/environment/ethicallivingblog/2009/jan/12/carbon-emissions-google

  14. -
  15. https://www.bbc.com/future/article/20200305-why-your-internet-habits-are-not-as-clean-as-you-think and https://www.bbc.com/news/amp/technology-55002423

  16. -
  17. https://theshiftproject.org/en/article/unsustainable-use-online-video/

  18. -
  19. https://www.ecosia.org/

  20. -
  21. https://addons.mozilla.org/fr/firefox/addon/carbonalyser/

  22. -
  23. http://www.green-algorithms.org/

  24. -
  25. https://landback.org/manifesto/

  26. -
  27. https://www.thebalancesmb.com/e-waste-recycling-facts-and-figures-2878189

  28. -
  29. https://www.dailymail.co.uk/home/moslive/article-1350811/In-China-true-cost-Britains-clean-green-wind-power-experiment-Pollution-disastrous-scale.html

  30. -
  31. https://munkschool.exposure.co/a-qa-with-ron-deibert

  32. -
-
diff --git a/content/Essays/Re-Centralization-of-AI.md b/content/Essays/Re-Centralization-of-AI.md new file mode 100644 index 0000000..81b5192 --- /dev/null +++ b/content/Essays/Re-Centralization-of-AI.md @@ -0,0 +1,398 @@ +Title: Re-Centralization of AI focusing on Social Justice +Author: Adnan Hadzi, Denis Roio + +# RE - CENTRALIZATION OF AI FOCUSING ON SOCIAL JUSTICE + +In order to lay the foundations for a discussion around +the argument that the adoption of artificial +intelligence (AI) technologies benefits the powerful +few, 1 focussing on their own existential concerns, 2 we +decided to narrow down our analysis of the argument +to social justic (i.e. restorative justice). This paper +signifies an edited version of Adnan Hadzi’s text on +Social Justice and Artificial Intelligence, 3 exploring the +notion of humanised artificial intelligence 4 in order to +discuss potential challenges society might face in the +future. The paper does not discuss current forms and +applications of artificial intelligence, as, so far, there +is no AI technology, which is self-conscious and self- +aware, being able to deal with emotional and social +intelligence. 5 It is a discussion around AI as a speculative +hypothetical entity. One could then ask, if such a speculative +self-conscious hardware/software system were created, at what +point could one talk of personhood? And what criteria could +there be in order to say an AI system was capable of +committing AI crimes? +Concerning what constitutes AI crimes the paper uses the +criteria given in Thomas King et al.’s paper Artificial +Intelligence Crime: An Interdisciplinary Analysis of Foreseeable +Threats and Solutions, 6 where King et al. coin the term “AI +crime”. We discuss the construction of the legal system through +the lens of political involvement of what one may want to +consider to be ‘powerful elites’ 7 . In doing so we will be +demonstrating that it is difficult to prove that the adoption of AI +technologies is undertaken in a way, which mainly serves a +powerful class in society. Nevertheless, analysing the culture +around AI technologies with regard to the nature of law with a +philosophical and sociological focus enables us to demonstrate +a utilitarian and authoritarian trend in the adoption of AI +technologies. Mason argues that “virtue ethics is the only +ethics fit for the task of imposing collective human control on +thinking machines” 8 and AI. We will apply virtue ethics to our +discourse around artificial intelligence and ethics. +As expert in AI safety Steve Omonhundro believes that AI is +“likely to behave in antisocial and harmful ways unless they are +very carefully designed.” 9 It is through virtue ethics that this +paper will propose for such a design to be centred around +restorative justice in order to take control over AI and thinking +machines, following Mason’s radical defence of the human and +his critique of current thoughts within trans- and post- +humanism as a submission to machine logic. + +The paper will conclude by proposing an alternative +practically unattainable, approach to the current legal system +by looking into restorative justice for AI crimes, 10 and how the +ethics of care could be applied to AI technologies. In conclusion +the paper will discuss affect 11 and humanised artificial +intelligence with regards to the emotion of shame, when +dealing with AI crimes. +In order to discuss AI in relation to personhood this paper +follows the descriptive psychology method 12 of the paradigm +case formulation 13 developed by Peter Ossorio. 14 Similar to how +some animal rights activists call for certain animals to be +recognised as non-human persons, 15 this paper speculates on +the notion of AI as a non-human person being able to reflect on +ethical concerns. 16 Here Wynn Schwartz argues that “it is +reasonable to include non-humans as persons and to have +legitimate grounds for disagreeing where the line is properly +drawn. In good faith, competent judges using this formulation +can clearly point to where and why they agree or disagree on +what is to be included in the category of persons.” 17 +In the case of AI technologies we ask whether the current +vision for the adoption of AI technologies, a vision which is +mainly supporting the military-industrial complex through vast +investments in army AI, 18 is a vision that benefits mainly +powerful elites. In order to discuss these questions, one has to +analyse the history of AI technologies leading to the kind of +‘humanised’ AI system this paper posits. The old-fashioned +approach, 19 some may still say contemporary approach, was to +primarily research into ‘mind-only’ 20 AI technologies/systems. +Through high level reasoning, researchers were optimistic that +AI technology would quickly become a reality. +Those early AI technologies were a disembodied approach +using high level logical and abstract symbols. By the end of the +80s researchers found that the disembodied approach was not +even achieving low level tasks humans could easily perform. 21 +During that period many researchers stopped working on AI +technologies and systems, and the period is often referred to as +the “AI winter”. 22 +Rodney Brooks then came forward with the proposition of +“Nouvelle AI”, 23 arguing that the old-fashioned approach did + +not take into consideration motor skills and neural networks. +Only by the end of the 90s did researchers develop statistical +AI systems without the need for any high-level logical +reasoning; 24 instead AI systems were ‘guessing’ through +algorithms and machine learning. This signalled a first step +towards humanistic artificial intelligence, as this resembles +how humans make intuitive decisions; 25 here researchers +suggest that embodiment improves cognition. 26 +With embodiment theory Brooks argued that AI systems +would operate best when computing only the data that was +absolutely necessary. 27 Further in Developing Embodied +Multisensory Dialogue Agents Michal Paradowski argues that +without considering embodiment, e.g. the physics of the brain, +it is not possible to create AI technologies/systems capable of +comprehension. +Foucault’s theories are especially helpful in discussing how +the “rule of truth” has disciplined civilisation, allowing for an +adoption of AI technologies which seem to benefit mainly the +upper-class. But then should we think of a notion of ‘deep-truth’ +as the unwieldy product of deep learning AI algorithms? +Discussions around truth, Foucault states, form legislation into +something that “decides, transmits and itself extends upon the +effects of power” 28 . Foucault’s theories help to explain how +legislation, as an institution, is rolled out throughout society +with very little resistance, or “proletarian counter-justice” 29 . + +Foucault explains that this has made the justice system and +legislation a for-profit system. With this understanding of +legislation, and social justice, one does need to reflect further +on Foucault’s notion of how disciplinary power seeks to express +its distributed nature in the modern state. Namely one has to +analyse the distributed nature of those AI technologies, +especially through networks and protocols, so that the link can +now be made to AI technologies becoming ‘legally’ more +profitable, in the hands of the upper-class. +In Protocol, Alexander Galloway describes how these +protocols changed the notion of power and how “control exists +after decentralization” 30 . Galloway argues that protocol has a +close connection to both Deleuze’s concept of control and +Foucault’s concept of biopolitics 31 by claiming that the key to +perceiving protocol as power is to acknowledge that “protocol +is an affective, aesthetic force that has control over life itself.” 32 +Galloway suggests that it is important to discuss more than the +technologies, and to look into the structures of control within +technological systems, which also include underlying codes and +protocols, in order to distinguish between methods that can +support collective production, e.g. sharing of AI technologies +within society, and those that put the AI technologies in the +hands of the powerful few. 33 Galloway’s argument in the +chapter Hacking is that the existence of protocols “not only +installs control into a terrain that on its surface appears +actively to resist it” 34 , but goes on to create the highly +controlled network environment. For Galloway hacking is “an +index of protocological transformations taking place in the +broader world of techno-culture.” 35 +Having said this, the prospect could be raised that +restorative justice might offer “a solution that could deliver +more meaningful justice” 36 . With respect to AI technologies, +and the potential inherent in them for AI crimes, instead of +following a retributive legislative approach, an ethical + +discourse, 37 with a deeper consideration for the sufferers of AI +crimes should be adopted. 38 We ask: could restorative justice +offer an alternative way of dealing with the occurrence of AI +crimes? 39 +Dale Millar and Neil Vidmar described two psychological +perceptions of justice. 40 One is behavioural control, following +the legal code as strictly as possible, punishing any +wrongdoer, 41 and second the restorative justice system, which +focuses on restoration where harm was done. Thus an +alternative approach for the ethical implementation of AI +technologies, with respect to legislation, might be to follow +restorative justice principles. Restorative justice would allow +for AI technologies to learn how to care about ethics. 42 Julia +Fionda describes restorative justice as a conciliation between +victim and offender, during which the offence is deliberated +upon. 43 Both parties try to come to an agreement on how to +achieve restoration for the damage done, to the situation +before the crime (here an AI crime) happened. Restorative +justice advocates compassion for the victim and offender, and a +consciousness on the part of the offenders as to the +repercussion of their crimes. The victims of AI crimes would + +not only be placed in front of a court, but also be offered +engagement in the process of seeking justice and restoration. 44 +Restorative justice might support victims of AI crimes better +than the punitive legal system, as it allows for the sufferers of +AI crimes to be heard in a personalised way, which could be +adopted to the needs of the victims (and offenders). As victims +and offenders represent themselves in restorative conferencing +sessions, these become much more affordable, 45 meaning that +the barrier to seeking justice due to the financial costs would +be partly eliminated, allowing for poor parties to be able to +contribute to the process of justice. This would benefit wider +society and AI technologies would not only be defined by a +powerful elite. Restorative justice could hold the potential not +only to discuss the AI crimes themselves, but also to get to the +root of the problem and discuss the cause of an AI crime. For +John Braithwaite restorative justice makes re-offending +harder. 46 +In such a scenario, a future AI system capable of committing +AI crimes would need to have knowledge of ethics around the +particular discourse of restorative justice. The implementation +of AI technologies will lead to a discourse around who is +responsible for actions taken by AI technologies. Even when +considering clearly defined ethical guidelines, these might be +difficult to implement, 47 due to the pressure of competition AI +systems find themselves in. That said, this speculation is +restricted to humanised artificial intelligence systems. The +main hindrance for AI technologies to be part of a restorative +justice system might be that of the very human emotion of +shame. Without a clear understanding of shame it will be +impossible to resolve AI crimes in a restorative manner. 48 + +Thus one might want to think about a humanised symbiosis +between humans and technology, 49 along the lines of Garry +Kasparov’s advanced chess, 50 as in advanced jurisprudence. 51 A +legal system where human and machine work together on +restoring justice, for social justice. Furthering this perspective, +we suggest that reflections brought by new materialism should +also be taken into account: not only as a critical perspective on +the engendering and anthropomorphic representation of AI, but +also to broaden the spectrum of what we consider to be justice +in relation to all the living world. Without this new perspective +the sort of idealized AI image of a non-living intelligence that +deals with enormous amounts of information risks to serve the +abstraction of anthropocentric views into a computationalist +acceleration, with deafening results. Rather than such an +implosive perspective, the application of law and jurisprudence +may take advantage of AI’s computational and sensorial +enhanced capabilities by including all information gathered +from the environment, also that produced by plants, animals +and soil. + + +[^1]: Cp. G. Chaslot, “YouTube’s A.I. was divisive in the US presidential election”, Medium, November 27, 2016. Available at: https://medium.com/the-graph/youtubes-ai-is-neutral-towards-clicks-but-is-biased-towards-people-and-ideas-3a2f643dea9a#.tjuusil7 d [accessed February 25, 2018]; E. Morozov, “The Geopolitics Of Artificial Intelligence”, FutureFest, London, 2018. Available at: https://www.youtube.com/watch?v=7g0hx9LPBq8 [accessed October 25, 2019]. +[^2]: Cp. M. Busby, “Use of ‘Killer Robots’ in Wars Would Breach Law, Say Campaigners”, The Guardian, August 21, 2018. Available at : https://web.archive.org/web/20181203074423/https://www.theguardian.com/science/2018/aug/21/use-of-killer-robots-in-wars-would-breach-law-say-campaigners [accessed October 25, 2019]. +[^3]: Cp. A. Hadzi, “Social Justice and Artificial Intelligence”, Body, Space & Technology, 18 (1), 2019, pp. 145–174. Available at: https://doi.org/10.16995/bst.318 [accessed October 25, 2019]. +[^4]: Cp. A. Kaplan and M. Haenlein, “Siri, Siri, in my Hand: Who’s the Fairest in the Land? On the Interpretations, Illustrations, and Implications of Artificial Intelligence”, Business Horizons, 62 (1), 2019, pp. 15–25. https://doi.org/10.1016/j.bushor.2018.08.0 04; S. Legg and M. Hutter, A Collection of Definitions of Intelligence, Lugano, Switzerland, IDSIA, 2007. Available at: http://arxiv.org/abs/0706.3639 [accessed October 25, 2019].2 +[^5]: +[^6]: +[^7]: +[^8]: +[^9]: N. Bostrom, Superintelligence: Paths, Dangers, Strategies, Oxford, Oxford University Press, 2014. Cp. T. King, N. Aggarwal, M. Taddeo and L. Floridi, “Artificial Intelligence Crime: An Interdisciplinary Analysis of Foreseeable Threats and Solutions”, SSRN Scholarly Paper No. ID 3183238, Rochester, NY, Social Science Research Network, 2018. Available at: https://papers.ssrn.com/abstract=3183238 [accessed October 25, 2019]. P. Mason, Clear Bright Future, London, Allen Lane Publishers, 2019. Mason, Clear Bright Future. S. Omohundro, “Autonomous Technology and the Greater Human Good”, Journal of Experimental & Theoretical Artificial Intelligence, 26 (3), 2014, pp. 303–315, here: p. 303.3 +[^10]: Cp. C. Cadwalladr, “Elizabeth Denham: ‘Data Crimes are Real Crimes”, The Guardian, July 15, 2018. Available at: https://web.archive.org/web/20181121235057/https://www.theguardian.com/uk-news/2018/jul/15/elizabeth-denham-data-protection-inf ormation-commissioner-facebook-cambridge-analytica [accessed October 25, 2019]. +[^11]: Cp. B. Olivier, “Cyberspace, Simulation, Artificial Intelligence, Affectionate Machines and Being Human”, Communicatio, 38 (3), 2012, pp. 261–278. https://doi.org/10.1080 /02500167.2012.716763 [accessed October 25, 2019]; E.A. Wilson, Affect and Artificial Intelligence, Washington, University of Washington Press, 2011. +[^12]: Cp. P.G. Ossorio, The Behavior of Persons, Ann Arbor, Descriptive Psychology Press, 2013. Available at: http://www.sdp.org/sdppubs- publications/the-behavior-of-perso ns/ [accessed October 25, 2019]. +[^13]: Cp. J. Jeffrey, “Knowledge Engineering: Theory and Practice”, Society for Descriptive Psychology, 5, 1990, pp. 105–122. +[^14]: Cp. P.G. Ossorio, Persons: The Collected Works of Peter G. Ossorio, Volume I. Ann Arbor, Descriptive Psychology Press, 1995. Available at: http://www.sdp.org/sdppubs-publications/persons-the-collected-works-of-peter-g-ossorio-volume-1/ [accessed October 25, 2019]. +[^15]: Cp. M. Mountain, “Lawsuit Filed Today on Behalf of Chimpanzee Seeking Legal Personhood”, Nonhuman Rights Blog, December 2, 2013. Available at: https://www.nonhumanrights.org/blog/lawsuit-filed-today-on-behalf-of-chimpanzee-seeking-legal-personhood/ [accessed January 8, 2019]; M. Midgley, “Fellow Champions Dolphins as ‘Non-Human Persons’”, Oxford Centre for Animal Ethics, January 10, 2010. Available at: https://www.oxfordanimalethics.com/2010/01/fellow -champions-dolphins-as-%E2%80%9Cnon-human-persons%E2%80%9D/ [accessed January 8, 2019]. +[^16]: Cp. R. Bergner, “The Tolstoy Dilemma: A Paradigm Case Formulation and Some Therapeutic Interventions”, in K.E. Davis, F. Lubuguin and W. Schwartz (eds.), Advances in Descriptive Psychology, Vol. 9, 2010, pp. 143–160. Available at: http://www.sdp.org/sdppubs-publications/advances-in-descriptive-psychology-vol-9; P. Laungani, “Mindless Psychiatry and Dubious Ethics”, Counselling Psychology4 Quarterly, 15 (1), 2002, pp. 23–33. Available at: https://doi.org/10.1080/09515070110102305 [accessed October 26, 2019]. +[^17]: W. Schwartz, “What Is a Person and How Can We Be Sure? A Paradigm Case Formulation”, SSRN Scholarly Paper No. ID 2511486, Rochester, NY: Social Science Research Network, 2014. Available at: https://papers.ssrn.com/abstract=2511486 [accessed October 25, 2019]. +[^18]: Cp. Mason, Clear Bright Future. +[^19]: Cp. M. Hoffman, and R. Pfeifer, “The Implications of Embodiment for Behavior and Cognition: Animal and Robotic Case Studies”, in W. Tschacher and C. Bergomi (eds.), The Implications of Embodiment: Cognition and Communication, Exeter, Andrews UK Limited, 2015, pp. 31– 58. Available at: https://arxiv.org/abs/1202.0440 +[^20]: N.J. Nilsson, The Quest for Artificial Intelligence, Cambridge, Cambridge University Press, 2009. +[^21]: Cp. R. Brooks, Cambrian Intelligence: The Early History of the New AI, Cambridge, MA, A Bradford Book, 1999. +[^22]: Cp. D. Crevier, AI: The Tumultuous History of the Search for Artificial Intelligence, New York, Basic Books, 1993; H.P. Newquist, The Brain Makers, Indianapolis, Ind: Sams., 1994. +[^23]: Cp. R. Brooks, “A Robust Layered Control System for a Mobile Robot”, IEEE Journal on Robotics and Automation, 2 (1), 1986, pp. 14–23. Available at: https://doi.org/510.1109/JRA.1986.1087032 [accessed October 25, 2019]. +24 +Cp. Brooks, Cambrian Intelligence. +25 +Cp. R. Pfeifer, “Embodied Artificial Intelligence”, presented at the +International Interdisciplinary Seminar on New Robotics, Evolution and +Embodied +Cognition, +Lisbon, +November, +2002. +Available +at: +https://www.informatics.indiana.edu/rocha/ +publications/embrob/pfeifer.html [accessed October 25, 2019]. +26 +Cp. T. Renzenbrink, “Embodiment of Artificial Intelligence +Improves Cognition”, Elektormagazine, February 9, 2012. Available at: +https://www.elektormagazine.com/art +icles/embodiment-of-artificial-intelligence-improves-cognition +[accessed +January 10, 2019]; G. Zarkadakis, “Artificial Intelligence & Embodiment: +Does Alexa Have a Body?”, Medium, May 6, 2018. Available at: +https://medium.com/@georgezarkadakis +/artificial-intelligence-embodiment-does-alexa-have-a-body-d5b97521a201 +[accessed January 10, 2019]. +27 +Cp. L. Steels and R. Brooks, The Artificial Life Route to Artificial +Intelligence: Building Embodied, Situated Agents, London/New York, Taylor +& Francis, 1995. +28 +M. Foucault, “Disciplinary Power and Subjection”, in S. Lukes (ed.), +Power, New York, NYU Press, 1986, pp. 229–242, here: p. 230. +29 +M. Foucault, Power, edited by C. Gordon, London, Penguin, 1980, +p. 34.6 +30 +A.R. Galloway, Protocol: How Control Exists After Decentralization, +Cambridge, MA, MIT Press, 2004, p. 81. +31 +Cp. M. Foucault, The Birth of Biopolitics: Lectures at the +Collège de France, 1978–1979, London, Pan Macmillan, 2008. +32 +Galloway, Protocol, p. 81. +33 +Cp. Galloway, Protocol, p. 147. +34 +Galloway, Protocol, p. 146. +35 +Galloway, Protocol, p. 157. +36 +Crook, Comparative Media Law and Ethics, p. 310.7 +37 +Cp. R. Courtland, “Bias Detectives: The Researchers Striving to +Make Algorithms Fair”, Nature, 558, 2018, pp. 357–360. Available at: +https://doi.org/10.1038/d41586-018-05469-3 [accessed October 25, 2019]. +38 +Cp. H. Fry, “We Hold People With Power to Account. Why Not +Algorithms?” The Guardian, September 17, 2018. Available at: +https://web.archive.org/web/201901021 +94739/https://www.theguardian.com/commentisfree/2018/sep/17/power- +algorithms-technology-regulate [accessed October 25, 2019]. +39 +Cp. O. Etzioni, “How to Regulate Artificial Intelligence”, The New +York +Times, +January +20, +2018. +Available +at: +https://www.nytimes.com/2017/09/01/opinion/artificial-intelligence- +regulations-rules.html [accessed October 25, 2019]; A. Goel, “Ethics and +Artificial Intelligence”, The New York Times, December 22, 2017. Available +at: https://www.nytimes.com/2017/09/14/opinion/artificial-intelligence.html +[accessed October 25, 2019]. +40 +Cp. N. Vidmar and D.T. Miller, “Socialpsychological Processes +Underlying Attitudes Toward Legal Punishment”, Law and Society Review, +1980, pp. 565–602. +41 +Cp. M. Wenzel and T.G. Okimoto, “How Acts of Forgiveness Restore +a Sense of Justice: Addressing Status/Power and Value Concerns Raised by +Transgressions”, European Journal of Social Psychology, 40 (3), 2010, pp. +401–417. +42 +Cp. N. Bostrom and E. Yudkowsky, “The Ethics of Artificial +Intelligence”, in K. Frankish and W.M. Ramsey (ed.), The Cambridge +Handbook of Artificial Intelligence, Cambridge, Cambridge University Press, +2014, pp. 316–334; Frankish and Ramsey, The Cambridge Handbook of +Artificial Intelligence. +43 +Cp. J. Fionda, Devils and Angels: Youth Policy and Crime, London, +Hart, 2005.8 + +44 +Cp. Nils Christie, “Conflicts as Property”, The British Journal of +Criminology, 17 (1), 1977, pp. 1–15. +45 +Cp. J. Braithwaite, “Restorative Justice and a Better Future”, in E. +McLaughlin and G. Hughes (eds.), Restorative Justice: Critical Issues, +London, SAGE, 2003, pp. 54–67. +46 +Cp. J. Braithwaite, Crime, Shame and Reintegration, Cambridge, +Cambridge University Press, 1989. +47 +Cp. A. Conn, “Podcast: Law and Ethics of Artificial Intelligence”, +Future +of +Life, +March +31, +2017. +Available +at: +https://futureoflife.org/2017/03/31/podcast-law-ethics-artificial-intelligence/ +[accessed September, 22 2018]. +48 +Cp. A. Rawnsley, “Madeleine Albright: ‘The Things that are +Happening are Genuinely, Seriously Bad’”, The Guardian, July 8, 2018. +Available +at: +https://web.archive.org/web/20190106193657/https://www.theguardian.com9 + +/books/2018/jul/08/madeleine-albright-fascism-is-not-an-ideology-its-a- +method-interview-fascism-a-warning [accessed October 25, 2019]. +49 +Cp. D. Haraway, “A Cyborg Manifesto”, Socialist Review, 15 (2), +1985. +Available +at: +http://www.stanford.edu/dept/HPS/Haraway/CyborgManifesto.html +[accessed October 25, 2019]; C. Thompson, “The Cyborg Advantage”, Wired, +March 22, 2010. Available at: https://www.wired.com/2010/03/st-thompson- +cyborgs/ [accessed October 25, 2019]. +50 +Cp. J. Hipp et al., “Computer Aided Diagnostic Tools Aim to +Empower Rather than Replace Pathologists: Lessons Learned from +Computational Chess”, Journal of Pathology Informatics, 2, 2011. Available +at: https://doi.org/10.4103/2153-3539.82050 [accessed October 25, 2019]. +51 +Cp. J. Baggini, “Memo to Those Seeking to Live for Ever: Eternal +Life Would be Deathly Dull”, The Guardian, July 8, 2018. Available at: +https://web.archive.org/web/20181225111455/https://www.theguardian.com +/commentisfree/2018/jul/08/live-for-ever-eternal-life-deathly-dull-immortality +[accessed October 25, 2019]. + + + + diff --git a/content/Essays/recommon-org-infrastructure-mega-corridors.pdf.html b/content/Essays/recommon-org-infrastructure-mega-corridors.pdf.html deleted file mode 100644 index 64cc9b5..0000000 --- a/content/Essays/recommon-org-infrastructure-mega-corridors.pdf.html +++ /dev/null @@ -1,11 +0,0 @@ -

Title: Infrastructure mega corridors: a way out (or in) to the crisis? Author: Recommon.org

-

“Infrastructure mega corridors: a way out (or in) to the crisis?”

-

Translated from an original blogpost in Italian by Elena Gerebizza and Filippo Taglieri from Re:Common introducing their new report: “The great illusion. Special economic zones and infrastructure mega-corridors, the way to go?”

-

In the last few months our lives have changed dramatically. Many of us lost their jobs while many others continued working under extreme conditions. Inequality and social injustices have become increasingly visible features of the economic system and the society in which we live.

-

The pandemic might have impacted everyone’s life, but it has not affected everyone in the same way. Among the sectors that did not suffer, but rather benefited from the crisis, are online platforms such as Amazon and the likes. Those sectors have become the vehicles for the transfer from “real life” to a virtual dimension for our working, schooling, sporting and socialising. Fortunately, many have been questioning what the implications of all this would be; including what might happen to the data generated by our online lives; by whom and how is this data being treated; and what are the  implications? This is a debate that we hope will remain open, since it concerns aspects that are not contingent to the health crisis, but are instead key factors in the reorganization of “the extractivist society”. A society that enables a few elites to extract more and more material and financial wealth from the territories and local communities that inhabit them, effectively expropriating them from the power to decide upon their own lives. 

-

While most ongoing conversations center around the health crisis and the resulting recession, we want to bring attention to the systemic reorganization that is taking place as we speak. We are talking about a process that began before the pandemic, a new way of organizing large infrastructure according to the logics of mega-corridors, to reduce time and space, with the aim of continuously increasing profits on an increasing scale in the face of a slowdown in the growth of global trade. This process, which remains only partly visible, is highly energy-intensive and rooted in the fossil fuel economy, involving the construction of new high-speed railways for the transport of goods, port terminals, data centres and power stations, as well as new logistics centres covering hundreds of hectares. All this implies a radical and irreversible transformation of territories for the benefit of large private capital, where ports and production areas identified as “free trade”, or “Special Economic Zones” (SEZs), all become interconnected. 

-

What are the manifestations in Italy and Europe of this global capital agenda? How will it change the social, economic and productive structure of our country and the continent? What impact will it have on the climate and the environment, two central areas where failures and systemic contradictions are already very visible? The question is partly rhetorical: it is difficult to imagine a “globalization 2.0” which will accelerate production, transport and consumption of goods at an unprecedented speed while at the same time profoundly reduce the systemic impact on the environment and climate, an impact that goes far beyond proposed calculations of direct and indirect emissions generated.

-

Will the major infrastructure mega-corridors plan be challenged in the post-pandemic economic crisis or will the current crisis be an excuse to accelerate it? Will its overall impact be properly assessed? This remains doubtful since harmful impacts of the global infrastructure agenda are so far considered as the least of their problems by investors and policy makers dazzled by forecasts and data about the production, logistics and global trade that is starting again. 

-

How does this infrastructure masterplan meet the needs of the millions of people who are already paying the highest costs of a profit-driven model at all costs? How does it meet the needs of communities that will be removed from their lands to make way for new mega infrastructure? How will it make our societies more resilient to the great droughts, typhoons, and increasingly heavy rains? How will it counteract the increasing cementing of the most densely populated areas and how will it enable everyone to have a roof over their heads?

-

We believe that it is high time to open up to such far-reaching questions.

-

The original article and link to the report can be found here.

diff --git a/content/Essays/zabala_warning.pdf.html b/content/Essays/zabala_warning.pdf.html deleted file mode 100644 index 8651310..0000000 --- a/content/Essays/zabala_warning.pdf.html +++ /dev/null @@ -1,58 +0,0 @@ -

Title: The Philosophy of Warnings Author: Santiago Zabala

-
-

-Published by:
Editing:
Design
Paper
Typeface
-

-

-Sponsors:
Thanks:
Other
-

-
-
-
-Of Whirlpools and Tornadoes
A Nourishing Network -
-
-AMRO 2020 -
-
-Santiago Zabala -
-
-The Philosophy of Warnings -
-
-Published in the Institute of Arts and Ideas -
-
-
-A Nourishing Network -
-
-The Philosophy of Warnings -
-
-

-This month an undergraduate student told me his parents were using the pandemic to persuade him to avoid philosophy as it could not prevent or solve real emergencies. I told him to let them know that we find ourselves in this global emergency because we haven’t thought philosophically enough. The increasingly narrow focus of experts this century has prevented us from addressing problems from a global perspective, which has always been the distinctive approach of philosophy. This is evident in the little consideration we give to warnings. Too often these are discarded as useless or insignificant—much like philosophy—when in fact they are vital. Though philosophers can’t solve an ongoing emergency—philosophy was never meant to solve anything—we can interpret their signs through a “philosophy of warnings.” Although this philosophy probably won’t change the views of my student’s parents, it might help us to reevaluate our political, environmental, and technological priorities for the future. -

-

-Like recent philosophies of plants or insects, which emerged as a response to a global environmental crisis, a “philosophy of warnings” is also a reaction to a global emergency that requires philosophical elucidation. Although the ongoing pandemic has triggered this new stance it isn’t limited to this event. Nor is it completely new. Warnings have been a topic of philosophical investigation for centuries. The difference lies in the meaning these concepts have acquired now. Before philosophy we had prophets to tell us to be alert to the warnings of the Gods, but we secularized that office into that of the philosopher, who, as one among equals, advised to heed the signs; to use our imagination, because that is all we got. The current pandemic has shown how little prepared we were for a global emergency, even one whose coming has been announced for decades. But why haven’t we been able to take these warnings seriously? Before tackling this question, let’s recall how warnings have been addressed philosophically. -

-

-Examples of warning philosophy can be traced back to Greek mythology and Plato's Apology. Apollo provided Cassandra with the gift of prophecy even though she could not convince others of the validity of her predictions, and Socrates warned the Athenians—after he was sentenced to death—that their inequity and mendacity undermined the democracy they claimed to honor. Against Gaston Bachelard, who coined the term “Cassandra complex” to refer to the idea that events could be known in advance, Theodore Adorno warned that any claim to know the future should be avoided. It is probably in this spirit that Walter Benjamin warned we should pull the brake on the train of progress as it was stacking disaster upon disaster. In line with Hannah Arendt’s warnings of the reemergence of totalitarianism after the Second World War, Giorgio Agamben began his book on the current pandemic with “A Warning”: biosecurity will now serve governments to rule through a new form of tyranny called “technological-sanitary” despotism. -

-

-These examples illustrate the difference between warnings and predictions. Warnings are sustained by signs in the present that request our involvement, as Benjamin suggests. Predictions call out what will take place regardless of our actions, a future as the only continuation of the present, but warnings instead point toward what is to come and are meant involve us in a radical break, a discontinuity with the present signaled by alarming signs that we are asked to confront. The problem is not the involvement warnings request from us but rather whether we are willing to confront them at all. The volume of vital warnings that we ignore—climate change, social inequality, refugee crises—is alarming; it has become our greatest emergency. -

-

-Indifference towards warnings is rooted in the ongoing global return to order and realism in the twenty-first century. This return is not only political, as demonstrated by the various right-wing populist forces that have taken office around the world, but also cultural as the return of some contemporary intellectuals to Eurocentric Cartesian realism demonstrates. The idea that we can still claim access to truth without being dependent upon interpretation presupposes that knowledge of objective facts is enough to guide our lives. Within this theoretical framework warnings are cast off as unfounded, contingent, and subjective, even though philosophers of science such as Bruno Latour continue to remind us that no “attested knowledge can stand on its own.” The internet and, in particular, social media have intensified this realist view, further discrediting traditional vectors of legitimation (international agencies, major newspapers, or credentialed academics) and rendering any tweet by an anonymous blogger credible because it presents itself as transparent, direct, and genuine. “The quickness of social media, as Judith Butler pointed out, allows for forms of vitriol that do not exactly support thoughtful debate.” -

-

-Our inability to take warnings seriously has devastating consequences, as recent months make clear. The central argument in favor of a philosophy of warnings is not whether what it warns of comes to pass but rather the pressure it exercises against those emergencies hidden and subsumed under the global call to order. This pressure demands that our political, environmental, and technological priorities be reconsidered, revealing the alarming signs of democratic backsliding, biodiversity loss, and commodification of our lives by surveillance capitalism. These warnings are also why we should oppose any demand to “return to normality,” which signals primarily a desire to ignore what caused this pandemic in the first place. A philosophy of warnings seeks to alter and interrupt the reality we’ve become accustomed to. -

-

-Although a philosophy of warnings will not prevent future emergencies, it will resist the ongoing silencing of emergencies under the guise of realism by challenging our framed global order and its realist advocates. This philosophy is not meant to rescue us from emergencies but rather rescue us into emergencies that we are trained to ignore. -

-
-
-Santiago Zabala is ICREA Research Professor of Philosophy at the Pompeu Fabra University in Barcelona. His most recent book is Being at Large: Freedom in the Age of Alternative Facts (McGill-Queen’s University Press, 2020). -
diff --git a/pelicanconf.py b/pelicanconf.py index ec3f259..5ad723c 100644 --- a/pelicanconf.py +++ b/pelicanconf.py @@ -13,8 +13,8 @@ TIMEZONE = 'Europe/Amsterdam' DEFAULT_DATE = 'fs' DEFAULT_LANG = 'en' -# DISPLAY_PAGES_ON_MENU = True -# DISPLAY_CATEGORIES_ON_MENU = True +DISPLAY_PAGES_ON_MENU = True +DISPLAY_CATEGORIES_ON_MENU = False # Feed settings FEED_DOMAIN = SITEURL diff --git a/themes/basic/static/css/print.css b/themes/basic/static/css/print.css index c6222e5..139a410 100644 --- a/themes/basic/static/css/print.css +++ b/themes/basic/static/css/print.css @@ -32,14 +32,14 @@ size:A4; margin-bottom: 2in; @bottom-center { - content: counter(page, first-except); + content: counter(page); font-size: 16px; font-family: "White Rabbit"; } @bottom-left { /* content: " ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )) \A ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (( \A ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )) \A ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ((";*/ content: "o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o \A o o o o o o o o o o o o o o o o o o \A o o o o o o o o o o o o o o o"; - font-size: 18px; + font-size: 16px; white-space: pre-wrap; font-family: "Unifont"; margin-bottom: 1.2in; @@ -162,7 +162,7 @@ .essay_content { font-family: 'Unifont'; - font-size: 18px; + font-size: 16px; line-height: 1.6; page-break-before: always; @@ -175,7 +175,7 @@ .bio { font-family: 'Unifont'; - font-size: 18px; + font-size: 16px; margin-top: 500px; margin-left: 400px; page-break-after: always; diff --git a/themes/basic/templates/base.html b/themes/basic/templates/base.html index af4a5da..40b4fbf 100644 --- a/themes/basic/templates/base.html +++ b/themes/basic/templates/base.html @@ -26,7 +26,7 @@ {% endfor %} {% endif %} {% for page in pages %} - {{ page.title }} + {{ page.title }} {% endfor %}