/* * aes.js: implements AES - Advanced Encryption Standard * from the SlowAES project, http://code.google.com/p/slowaes/ * * Copyright (c) 2008 Josh Davis ( http://www.josh-davis.org ), * Mark Percival ( http://mpercival.com ), * * Ported from C code written by Laurent Haan ( http://www.progressive-coding.com ) * * Licensed under the Apache License, Version 2.0 * http://www.apache.org/licenses/ */ var slowAES = { /* * START AES SECTION */ aes:{ // structure of valid key sizes keySize:{ SIZE_128:16, SIZE_192:24, SIZE_256:32 }, // Rijndael S-box sbox:[ 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 ], // Rijndael Inverted S-box rsbox: [ 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb , 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb , 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e , 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25 , 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92 , 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84 , 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06 , 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b , 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73 , 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e , 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b , 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4 , 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f , 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef , 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61 , 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d ], /* rotate the word eight bits to the left */ rotate:function(word) { var c = word[0]; for (var i = 0; i < 3; i++) word[i] = word[i+1]; word[3] = c; return word; }, // Rijndael Rcon Rcon:[ 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb ], G2X: [ 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e, 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e, 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e, 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e, 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe, 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde, 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe, 0x1b, 0x19, 0x1f, 0x1d, 0x13, 0x11, 0x17, 0x15, 0x0b, 0x09, 0x0f, 0x0d, 0x03, 0x01, 0x07, 0x05, 0x3b, 0x39, 0x3f, 0x3d, 0x33, 0x31, 0x37, 0x35, 0x2b, 0x29, 0x2f, 0x2d, 0x23, 0x21, 0x27, 0x25, 0x5b, 0x59, 0x5f, 0x5d, 0x53, 0x51, 0x57, 0x55, 0x4b, 0x49, 0x4f, 0x4d, 0x43, 0x41, 0x47, 0x45, 0x7b, 0x79, 0x7f, 0x7d, 0x73, 0x71, 0x77, 0x75, 0x6b, 0x69, 0x6f, 0x6d, 0x63, 0x61, 0x67, 0x65, 0x9b, 0x99, 0x9f, 0x9d, 0x93, 0x91, 0x97, 0x95, 0x8b, 0x89, 0x8f, 0x8d, 0x83, 0x81, 0x87, 0x85, 0xbb, 0xb9, 0xbf, 0xbd, 0xb3, 0xb1, 0xb7, 0xb5, 0xab, 0xa9, 0xaf, 0xad, 0xa3, 0xa1, 0xa7, 0xa5, 0xdb, 0xd9, 0xdf, 0xdd, 0xd3, 0xd1, 0xd7, 0xd5, 0xcb, 0xc9, 0xcf, 0xcd, 0xc3, 0xc1, 0xc7, 0xc5, 0xfb, 0xf9, 0xff, 0xfd, 0xf3, 0xf1, 0xf7, 0xf5, 0xeb, 0xe9, 0xef, 0xed, 0xe3, 0xe1, 0xe7, 0xe5 ], G3X: [ 0x00, 0x03, 0x06, 0x05, 0x0c, 0x0f, 0x0a, 0x09, 0x18, 0x1b, 0x1e, 0x1d, 0x14, 0x17, 0x12, 0x11, 0x30, 0x33, 0x36, 0x35, 0x3c, 0x3f, 0x3a, 0x39, 0x28, 0x2b, 0x2e, 0x2d, 0x24, 0x27, 0x22, 0x21, 0x60, 0x63, 0x66, 0x65, 0x6c, 0x6f, 0x6a, 0x69, 0x78, 0x7b, 0x7e, 0x7d, 0x74, 0x77, 0x72, 0x71, 0x50, 0x53, 0x56, 0x55, 0x5c, 0x5f, 0x5a, 0x59, 0x48, 0x4b, 0x4e, 0x4d, 0x44, 0x47, 0x42, 0x41, 0xc0, 0xc3, 0xc6, 0xc5, 0xcc, 0xcf, 0xca, 0xc9, 0xd8, 0xdb, 0xde, 0xdd, 0xd4, 0xd7, 0xd2, 0xd1, 0xf0, 0xf3, 0xf6, 0xf5, 0xfc, 0xff, 0xfa, 0xf9, 0xe8, 0xeb, 0xee, 0xed, 0xe4, 0xe7, 0xe2, 0xe1, 0xa0, 0xa3, 0xa6, 0xa5, 0xac, 0xaf, 0xaa, 0xa9, 0xb8, 0xbb, 0xbe, 0xbd, 0xb4, 0xb7, 0xb2, 0xb1, 0x90, 0x93, 0x96, 0x95, 0x9c, 0x9f, 0x9a, 0x99, 0x88, 0x8b, 0x8e, 0x8d, 0x84, 0x87, 0x82, 0x81, 0x9b, 0x98, 0x9d, 0x9e, 0x97, 0x94, 0x91, 0x92, 0x83, 0x80, 0x85, 0x86, 0x8f, 0x8c, 0x89, 0x8a, 0xab, 0xa8, 0xad, 0xae, 0xa7, 0xa4, 0xa1, 0xa2, 0xb3, 0xb0, 0xb5, 0xb6, 0xbf, 0xbc, 0xb9, 0xba, 0xfb, 0xf8, 0xfd, 0xfe, 0xf7, 0xf4, 0xf1, 0xf2, 0xe3, 0xe0, 0xe5, 0xe6, 0xef, 0xec, 0xe9, 0xea, 0xcb, 0xc8, 0xcd, 0xce, 0xc7, 0xc4, 0xc1, 0xc2, 0xd3, 0xd0, 0xd5, 0xd6, 0xdf, 0xdc, 0xd9, 0xda, 0x5b, 0x58, 0x5d, 0x5e, 0x57, 0x54, 0x51, 0x52, 0x43, 0x40, 0x45, 0x46, 0x4f, 0x4c, 0x49, 0x4a, 0x6b, 0x68, 0x6d, 0x6e, 0x67, 0x64, 0x61, 0x62, 0x73, 0x70, 0x75, 0x76, 0x7f, 0x7c, 0x79, 0x7a, 0x3b, 0x38, 0x3d, 0x3e, 0x37, 0x34, 0x31, 0x32, 0x23, 0x20, 0x25, 0x26, 0x2f, 0x2c, 0x29, 0x2a, 0x0b, 0x08, 0x0d, 0x0e, 0x07, 0x04, 0x01, 0x02, 0x13, 0x10, 0x15, 0x16, 0x1f, 0x1c, 0x19, 0x1a ], G9X: [ 0x00, 0x09, 0x12, 0x1b, 0x24, 0x2d, 0x36, 0x3f, 0x48, 0x41, 0x5a, 0x53, 0x6c, 0x65, 0x7e, 0x77, 0x90, 0x99, 0x82, 0x8b, 0xb4, 0xbd, 0xa6, 0xaf, 0xd8, 0xd1, 0xca, 0xc3, 0xfc, 0xf5, 0xee, 0xe7, 0x3b, 0x32, 0x29, 0x20, 0x1f, 0x16, 0x0d, 0x04, 0x73, 0x7a, 0x61, 0x68, 0x57, 0x5e, 0x45, 0x4c, 0xab, 0xa2, 0xb9, 0xb0, 0x8f, 0x86, 0x9d, 0x94, 0xe3, 0xea, 0xf1, 0xf8, 0xc7, 0xce, 0xd5, 0xdc, 0x76, 0x7f, 0x64, 0x6d, 0x52, 0x5b, 0x40, 0x49, 0x3e, 0x37, 0x2c, 0x25, 0x1a, 0x13, 0x08, 0x01, 0xe6, 0xef, 0xf4, 0xfd, 0xc2, 0xcb, 0xd0, 0xd9, 0xae, 0xa7, 0xbc, 0xb5, 0x8a, 0x83, 0x98, 0x91, 0x4d, 0x44, 0x5f, 0x56, 0x69, 0x60, 0x7b, 0x72, 0x05, 0x0c, 0x17, 0x1e, 0x21, 0x28, 0x33, 0x3a, 0xdd, 0xd4, 0xcf, 0xc6, 0xf9, 0xf0, 0xeb, 0xe2, 0x95, 0x9c, 0x87, 0x8e, 0xb1, 0xb8, 0xa3, 0xaa, 0xec, 0xe5, 0xfe, 0xf7, 0xc8, 0xc1, 0xda, 0xd3, 0xa4, 0xad, 0xb6, 0xbf, 0x80, 0x89, 0x92, 0x9b, 0x7c, 0x75, 0x6e, 0x67, 0x58, 0x51, 0x4a, 0x43, 0x34, 0x3d, 0x26, 0x2f, 0x10, 0x19, 0x02, 0x0b, 0xd7, 0xde, 0xc5, 0xcc, 0xf3, 0xfa, 0xe1, 0xe8, 0x9f, 0x96, 0x8d, 0x84, 0xbb, 0xb2, 0xa9, 0xa0, 0x47, 0x4e, 0x55, 0x5c, 0x63, 0x6a, 0x71, 0x78, 0x0f, 0x06, 0x1d, 0x14, 0x2b, 0x22, 0x39, 0x30, 0x9a, 0x93, 0x88, 0x81, 0xbe, 0xb7, 0xac, 0xa5, 0xd2, 0xdb, 0xc0, 0xc9, 0xf6, 0xff, 0xe4, 0xed, 0x0a, 0x03, 0x18, 0x11, 0x2e, 0x27, 0x3c, 0x35, 0x42, 0x4b, 0x50, 0x59, 0x66, 0x6f, 0x74, 0x7d, 0xa1, 0xa8, 0xb3, 0xba, 0x85, 0x8c, 0x97, 0x9e, 0xe9, 0xe0, 0xfb, 0xf2, 0xcd, 0xc4, 0xdf, 0xd6, 0x31, 0x38, 0x23, 0x2a, 0x15, 0x1c, 0x07, 0x0e, 0x79, 0x70, 0x6b, 0x62, 0x5d, 0x54, 0x4f, 0x46 ], GBX: [ 0x00, 0x0b, 0x16, 0x1d, 0x2c, 0x27, 0x3a, 0x31, 0x58, 0x53, 0x4e, 0x45, 0x74, 0x7f, 0x62, 0x69, 0xb0, 0xbb, 0xa6, 0xad, 0x9c, 0x97, 0x8a, 0x81, 0xe8, 0xe3, 0xfe, 0xf5, 0xc4, 0xcf, 0xd2, 0xd9, 0x7b, 0x70, 0x6d, 0x66, 0x57, 0x5c, 0x41, 0x4a, 0x23, 0x28, 0x35, 0x3e, 0x0f, 0x04, 0x19, 0x12, 0xcb, 0xc0, 0xdd, 0xd6, 0xe7, 0xec, 0xf1, 0xfa, 0x93, 0x98, 0x85, 0x8e, 0xbf, 0xb4, 0xa9, 0xa2, 0xf6, 0xfd, 0xe0, 0xeb, 0xda, 0xd1, 0xcc, 0xc7, 0xae, 0xa5, 0xb8, 0xb3, 0x82, 0x89, 0x94, 0x9f, 0x46, 0x4d, 0x50, 0x5b, 0x6a, 0x61, 0x7c, 0x77, 0x1e, 0x15, 0x08, 0x03, 0x32, 0x39, 0x24, 0x2f, 0x8d, 0x86, 0x9b, 0x90, 0xa1, 0xaa, 0xb7, 0xbc, 0xd5, 0xde, 0xc3, 0xc8, 0xf9, 0xf2, 0xef, 0xe4, 0x3d, 0x36, 0x2b, 0x20, 0x11, 0x1a, 0x07, 0x0c, 0x65, 0x6e, 0x73, 0x78, 0x49, 0x42, 0x5f, 0x54, 0xf7, 0xfc, 0xe1, 0xea, 0xdb, 0xd0, 0xcd, 0xc6, 0xaf, 0xa4, 0xb9, 0xb2, 0x83, 0x88, 0x95, 0x9e, 0x47, 0x4c, 0x51, 0x5a, 0x6b, 0x60, 0x7d, 0x76, 0x1f, 0x14, 0x09, 0x02, 0x33, 0x38, 0x25, 0x2e, 0x8c, 0x87, 0x9a, 0x91, 0xa0, 0xab, 0xb6, 0xbd, 0xd4, 0xdf, 0xc2, 0xc9, 0xf8, 0xf3, 0xee, 0xe5, 0x3c, 0x37, 0x2a, 0x21, 0x10, 0x1b, 0x06, 0x0d, 0x64, 0x6f, 0x72, 0x79, 0x48, 0x43, 0x5e, 0x55, 0x01, 0x0a, 0x17, 0x1c, 0x2d, 0x26, 0x3b, 0x30, 0x59, 0x52, 0x4f, 0x44, 0x75, 0x7e, 0x63, 0x68, 0xb1, 0xba, 0xa7, 0xac, 0x9d, 0x96, 0x8b, 0x80, 0xe9, 0xe2, 0xff, 0xf4, 0xc5, 0xce, 0xd3, 0xd8, 0x7a, 0x71, 0x6c, 0x67, 0x56, 0x5d, 0x40, 0x4b, 0x22, 0x29, 0x34, 0x3f, 0x0e, 0x05, 0x18, 0x13, 0xca, 0xc1, 0xdc, 0xd7, 0xe6, 0xed, 0xf0, 0xfb, 0x92, 0x99, 0x84, 0x8f, 0xbe, 0xb5, 0xa8, 0xa3 ], GDX: [ 0x00, 0x0d, 0x1a, 0x17, 0x34, 0x39, 0x2e, 0x23, 0x68, 0x65, 0x72, 0x7f, 0x5c, 0x51, 0x46, 0x4b, 0xd0, 0xdd, 0xca, 0xc7, 0xe4, 0xe9, 0xfe, 0xf3, 0xb8, 0xb5, 0xa2, 0xaf, 0x8c, 0x81, 0x96, 0x9b, 0xbb, 0xb6, 0xa1, 0xac, 0x8f, 0x82, 0x95, 0x98, 0xd3, 0xde, 0xc9, 0xc4, 0xe7, 0xea, 0xfd, 0xf0, 0x6b, 0x66, 0x71, 0x7c, 0x5f, 0x52, 0x45, 0x48, 0x03, 0x0e, 0x19, 0x14, 0x37, 0x3a, 0x2d, 0x20, 0x6d, 0x60, 0x77, 0x7a, 0x59, 0x54, 0x43, 0x4e, 0x05, 0x08, 0x1f, 0x12, 0x31, 0x3c, 0x2b, 0x26, 0xbd, 0xb0, 0xa7, 0xaa, 0x89, 0x84, 0x93, 0x9e, 0xd5, 0xd8, 0xcf, 0xc2, 0xe1, 0xec, 0xfb, 0xf6, 0xd6, 0xdb, 0xcc, 0xc1, 0xe2, 0xef, 0xf8, 0xf5, 0xbe, 0xb3, 0xa4, 0xa9, 0x8a, 0x87, 0x90, 0x9d, 0x06, 0x0b, 0x1c, 0x11, 0x32, 0x3f, 0x28, 0x25, 0x6e, 0x63, 0x74, 0x79, 0x5a, 0x57, 0x40, 0x4d, 0xda, 0xd7, 0xc0, 0xcd, 0xee, 0xe3, 0xf4, 0xf9, 0xb2, 0xbf, 0xa8, 0xa5, 0x86, 0x8b, 0x9c, 0x91, 0x0a, 0x07, 0x10, 0x1d, 0x3e, 0x33, 0x24, 0x29, 0x62, 0x6f, 0x78, 0x75, 0x56, 0x5b, 0x4c, 0x41, 0x61, 0x6c, 0x7b, 0x76, 0x55, 0x58, 0x4f, 0x42, 0x09, 0x04, 0x13, 0x1e, 0x3d, 0x30, 0x27, 0x2a, 0xb1, 0xbc, 0xab, 0xa6, 0x85, 0x88, 0x9f, 0x92, 0xd9, 0xd4, 0xc3, 0xce, 0xed, 0xe0, 0xf7, 0xfa, 0xb7, 0xba, 0xad, 0xa0, 0x83, 0x8e, 0x99, 0x94, 0xdf, 0xd2, 0xc5, 0xc8, 0xeb, 0xe6, 0xf1, 0xfc, 0x67, 0x6a, 0x7d, 0x70, 0x53, 0x5e, 0x49, 0x44, 0x0f, 0x02, 0x15, 0x18, 0x3b, 0x36, 0x21, 0x2c, 0x0c, 0x01, 0x16, 0x1b, 0x38, 0x35, 0x22, 0x2f, 0x64, 0x69, 0x7e, 0x73, 0x50, 0x5d, 0x4a, 0x47, 0xdc, 0xd1, 0xc6, 0xcb, 0xe8, 0xe5, 0xf2, 0xff, 0xb4, 0xb9, 0xae, 0xa3, 0x80, 0x8d, 0x9a, 0x97 ], GEX: [ 0x00, 0x0e, 0x1c, 0x12, 0x38, 0x36, 0x24, 0x2a, 0x70, 0x7e, 0x6c, 0x62, 0x48, 0x46, 0x54, 0x5a, 0xe0, 0xee, 0xfc, 0xf2, 0xd8, 0xd6, 0xc4, 0xca, 0x90, 0x9e, 0x8c, 0x82, 0xa8, 0xa6, 0xb4, 0xba, 0xdb, 0xd5, 0xc7, 0xc9, 0xe3, 0xed, 0xff, 0xf1, 0xab, 0xa5, 0xb7, 0xb9, 0x93, 0x9d, 0x8f, 0x81, 0x3b, 0x35, 0x27, 0x29, 0x03, 0x0d, 0x1f, 0x11, 0x4b, 0x45, 0x57, 0x59, 0x73, 0x7d, 0x6f, 0x61, 0xad, 0xa3, 0xb1, 0xbf, 0x95, 0x9b, 0x89, 0x87, 0xdd, 0xd3, 0xc1, 0xcf, 0xe5, 0xeb, 0xf9, 0xf7, 0x4d, 0x43, 0x51, 0x5f, 0x75, 0x7b, 0x69, 0x67, 0x3d, 0x33, 0x21, 0x2f, 0x05, 0x0b, 0x19, 0x17, 0x76, 0x78, 0x6a, 0x64, 0x4e, 0x40, 0x52, 0x5c, 0x06, 0x08, 0x1a, 0x14, 0x3e, 0x30, 0x22, 0x2c, 0x96, 0x98, 0x8a, 0x84, 0xae, 0xa0, 0xb2, 0xbc, 0xe6, 0xe8, 0xfa, 0xf4, 0xde, 0xd0, 0xc2, 0xcc, 0x41, 0x4f, 0x5d, 0x53, 0x79, 0x77, 0x65, 0x6b, 0x31, 0x3f, 0x2d, 0x23, 0x09, 0x07, 0x15, 0x1b, 0xa1, 0xaf, 0xbd, 0xb3, 0x99, 0x97, 0x85, 0x8b, 0xd1, 0xdf, 0xcd, 0xc3, 0xe9, 0xe7, 0xf5, 0xfb, 0x9a, 0x94, 0x86, 0x88, 0xa2, 0xac, 0xbe, 0xb0, 0xea, 0xe4, 0xf6, 0xf8, 0xd2, 0xdc, 0xce, 0xc0, 0x7a, 0x74, 0x66, 0x68, 0x42, 0x4c, 0x5e, 0x50, 0x0a, 0x04, 0x16, 0x18, 0x32, 0x3c, 0x2e, 0x20, 0xec, 0xe2, 0xf0, 0xfe, 0xd4, 0xda, 0xc8, 0xc6, 0x9c, 0x92, 0x80, 0x8e, 0xa4, 0xaa, 0xb8, 0xb6, 0x0c, 0x02, 0x10, 0x1e, 0x34, 0x3a, 0x28, 0x26, 0x7c, 0x72, 0x60, 0x6e, 0x44, 0x4a, 0x58, 0x56, 0x37, 0x39, 0x2b, 0x25, 0x0f, 0x01, 0x13, 0x1d, 0x47, 0x49, 0x5b, 0x55, 0x7f, 0x71, 0x63, 0x6d, 0xd7, 0xd9, 0xcb, 0xc5, 0xef, 0xe1, 0xf3, 0xfd, 0xa7, 0xa9, 0xbb, 0xb5, 0x9f, 0x91, 0x83, 0x8d ], // Key Schedule Core core:function(word,iteration) { /* rotate the 32-bit word 8 bits to the left */ word = this.rotate(word); /* apply S-Box substitution on all 4 parts of the 32-bit word */ for (var i = 0; i < 4; ++i) word[i] = this.sbox[word[i]]; /* XOR the output of the rcon operation with i to the first part (leftmost) only */ word[0] = word[0]^this.Rcon[iteration]; return word; }, /* Rijndael's key expansion * expands an 128,192,256 key into an 176,208,240 bytes key * * expandedKey is a pointer to an char array of large enough size * key is a pointer to a non-expanded key */ expandKey:function(key,size) { var expandedKeySize = (16*(this.numberOfRounds(size)+1)); /* current expanded keySize, in bytes */ var currentSize = 0; var rconIteration = 1; var t = []; // temporary 4-byte variable var expandedKey = []; for(var i = 0;i < expandedKeySize;i++) expandedKey[i] = 0; /* set the 16,24,32 bytes of the expanded key to the input key */ for (var j = 0; j < size; j++) expandedKey[j] = key[j]; currentSize += size; while (currentSize < expandedKeySize) { /* assign the previous 4 bytes to the temporary value t */ for (var k = 0; k < 4; k++) t[k] = expandedKey[(currentSize - 4) + k]; /* every 16,24,32 bytes we apply the core schedule to t * and increment rconIteration afterwards */ if(currentSize % size == 0) t = this.core(t, rconIteration++); /* For 256-bit keys, we add an extra sbox to the calculation */ if(size == this.keySize.SIZE_256 && ((currentSize % size) == 16)) for(var l = 0; l < 4; l++) t[l] = this.sbox[t[l]]; /* We XOR t with the four-byte block 16,24,32 bytes before the new expanded key. * This becomes the next four bytes in the expanded key. */ for(var m = 0; m < 4; m++) { expandedKey[currentSize] = expandedKey[currentSize - size] ^ t[m]; currentSize++; } } return expandedKey; }, // Adds (XORs) the round key to the state addRoundKey:function(state,roundKey) { for (var i = 0; i < 16; i++) state[i] ^= roundKey[i]; return state; }, // Creates a round key from the given expanded key and the // position within the expanded key. createRoundKey:function(expandedKey,roundKeyPointer) { var roundKey = []; for (var i = 0; i < 4; i++) for (var j = 0; j < 4; j++) roundKey[j*4+i] = expandedKey[roundKeyPointer + i*4 + j]; return roundKey; }, /* substitute all the values from the state with the value in the SBox * using the state value as index for the SBox */ subBytes:function(state,isInv) { for (var i = 0; i < 16; i++) state[i] = isInv?this.rsbox[state[i]]:this.sbox[state[i]]; return state; }, /* iterate over the 4 rows and call shiftRow() with that row */ shiftRows:function(state,isInv) { for (var i = 0; i < 4; i++) state = this.shiftRow(state,i*4, i,isInv); return state; }, /* each iteration shifts the row to the left by 1 */ shiftRow:function(state,statePointer,nbr,isInv) { for (var i = 0; i < nbr; i++) { if(isInv) { var tmp = state[statePointer + 3]; for (var j = 3; j > 0; j--) state[statePointer + j] = state[statePointer + j-1]; state[statePointer] = tmp; } else { var tmp = state[statePointer]; for (var j = 0; j < 3; j++) state[statePointer + j] = state[statePointer + j+1]; state[statePointer + 3] = tmp; } } return state; }, // galois multiplication of 8 bit characters a and b galois_multiplication:function(a,b) { var p = 0; for(var counter = 0; counter < 8; counter++) { if((b & 1) == 1) p ^= a; if(p > 0x100) p ^= 0x100; var hi_bit_set = (a & 0x80); //keep p 8 bit a <<= 1; if(a > 0x100) a ^= 0x100; //keep a 8 bit if(hi_bit_set == 0x80) a ^= 0x1b; if(a > 0x100) a ^= 0x100; //keep a 8 bit b >>= 1; if(b > 0x100) b ^= 0x100; //keep b 8 bit } return p; }, // galois multipication of the 4x4 matrix mixColumns:function(state,isInv) { var column = []; /* iterate over the 4 columns */ for (var i = 0; i < 4; i++) { /* construct one column by iterating over the 4 rows */ for (var j = 0; j < 4; j++) column[j] = state[(j*4)+i]; /* apply the mixColumn on one column */ column = this.mixColumn(column,isInv); /* put the values back into the state */ for (var k = 0; k < 4; k++) state[(k*4)+i] = column[k]; } return state; }, // galois multipication of 1 column of the 4x4 matrix mixColumn:function(column,isInv) { var mult = []; if(isInv) mult = [14,9,13,11]; else mult = [2,1,1,3]; var cpy = []; for(var i = 0; i < 4; i++) cpy[i] = column[i]; column[0] = this.galois_multiplication(cpy[0],mult[0]) ^ this.galois_multiplication(cpy[3],mult[1]) ^ this.galois_multiplication(cpy[2],mult[2]) ^ this.galois_multiplication(cpy[1],mult[3]); column[1] = this.galois_multiplication(cpy[1],mult[0]) ^ this.galois_multiplication(cpy[0],mult[1]) ^ this.galois_multiplication(cpy[3],mult[2]) ^ this.galois_multiplication(cpy[2],mult[3]); column[2] = this.galois_multiplication(cpy[2],mult[0]) ^ this.galois_multiplication(cpy[1],mult[1]) ^ this.galois_multiplication(cpy[0],mult[2]) ^ this.galois_multiplication(cpy[3],mult[3]); column[3] = this.galois_multiplication(cpy[3],mult[0]) ^ this.galois_multiplication(cpy[2],mult[1]) ^ this.galois_multiplication(cpy[1],mult[2]) ^ this.galois_multiplication(cpy[0],mult[3]); return column; }, // applies the 4 operations of the forward round in sequence round:function(state, roundKey) { state = this.subBytes(state,false); state = this.shiftRows(state,false); state = this.mixColumns(state,false); state = this.addRoundKey(state, roundKey); return state; }, // applies the 4 operations of the inverse round in sequence invRound:function(state,roundKey) { state = this.shiftRows(state,true); state = this.subBytes(state,true); state = this.addRoundKey(state, roundKey); state = this.mixColumns(state,true); return state; }, /* * Perform the initial operations, the standard round, and the final operations * of the forward aes, creating a round key for each round */ main:function(state,expandedKey,nbrRounds) { state = this.addRoundKey(state, this.createRoundKey(expandedKey,0)); for (var i = 1; i < nbrRounds; i++) state = this.round(state, this.createRoundKey(expandedKey,16*i)); state = this.subBytes(state,false); state = this.shiftRows(state,false); state = this.addRoundKey(state, this.createRoundKey(expandedKey,16*nbrRounds)); return state; }, /* * Perform the initial operations, the standard round, and the final operations * of the inverse aes, creating a round key for each round */ invMain:function(state, expandedKey, nbrRounds) { state = this.addRoundKey(state, this.createRoundKey(expandedKey,16*nbrRounds)); for (var i = nbrRounds-1; i > 0; i--) state = this.invRound(state, this.createRoundKey(expandedKey,16*i)); state = this.shiftRows(state,true); state = this.subBytes(state,true); state = this.addRoundKey(state, this.createRoundKey(expandedKey,0)); return state; }, numberOfRounds:function(size) { var nbrRounds; switch (size) /* set the number of rounds */ { case this.keySize.SIZE_128: nbrRounds = 10; break; case this.keySize.SIZE_192: nbrRounds = 12; break; case this.keySize.SIZE_256: nbrRounds = 14; break; default: return null; break; } return nbrRounds; }, // encrypts a 128 bit input block against the given key of size specified encrypt:function(input,key,size) { var output = []; var block = []; /* the 128 bit block to encode */ var nbrRounds = this.numberOfRounds(size); /* Set the block values, for the block: * a0,0 a0,1 a0,2 a0,3 * a1,0 a1,1 a1,2 a1,3 * a2,0 a2,1 a2,2 a2,3 * a3,0 a3,1 a3,2 a3,3 * the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3 */ for (var i = 0; i < 4; i++) /* iterate over the columns */ for (var j = 0; j < 4; j++) /* iterate over the rows */ block[(i+(j*4))] = input[(i*4)+j]; /* expand the key into an 176, 208, 240 bytes key */ var expandedKey = this.expandKey(key, size); /* the expanded key */ /* encrypt the block using the expandedKey */ block = this.main(block, expandedKey, nbrRounds); for (var k = 0; k < 4; k++) /* unmap the block again into the output */ for (var l = 0; l < 4; l++) /* iterate over the rows */ output[(k*4)+l] = block[(k+(l*4))]; return output; }, // decrypts a 128 bit input block against the given key of size specified decrypt:function(input, key, size) { var output = []; var block = []; /* the 128 bit block to decode */ var nbrRounds = this.numberOfRounds(size); /* Set the block values, for the block: * a0,0 a0,1 a0,2 a0,3 * a1,0 a1,1 a1,2 a1,3 * a2,0 a2,1 a2,2 a2,3 * a3,0 a3,1 a3,2 a3,3 * the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3 */ for (var i = 0; i < 4; i++) /* iterate over the columns */ for (var j = 0; j < 4; j++) /* iterate over the rows */ block[(i+(j*4))] = input[(i*4)+j]; /* expand the key into an 176, 208, 240 bytes key */ var expandedKey = this.expandKey(key, size); /* decrypt the block using the expandedKey */ block = this.invMain(block, expandedKey, nbrRounds); for (var k = 0; k < 4; k++)/* unmap the block again into the output */ for (var l = 0; l < 4; l++)/* iterate over the rows */ output[(k*4)+l] = block[(k+(l*4))]; return output; } }, /* * END AES SECTION */ /* * START MODE OF OPERATION SECTION */ //structure of supported modes of operation modeOfOperation:{ OFB:0, CFB:1, CBC:2 }, // get a 16 byte block (aes operates on 128bits) getBlock: function(bytesIn,start,end,mode) { if(end - start > 16) end = start + 16; return bytesIn.slice(start, end); }, /* * Mode of Operation Encryption * bytesIn - Input String as array of bytes * mode - mode of type modeOfOperation * key - a number array of length 'size' * size - the bit length of the key * iv - the 128 bit number array Initialization Vector */ encrypt: function (bytesIn, mode, key, iv) { var size = key.length; if(iv.length%16) { throw 'iv length must be 128 bits.'; } // the AES input/output var byteArray = []; var input = []; var output = []; var ciphertext = []; var cipherOut = []; // char firstRound var firstRound = true; if (mode == this.modeOfOperation.CBC) this.padBytesIn(bytesIn); if (bytesIn !== null) { for (var j = 0;j < Math.ceil(bytesIn.length/16); j++) { var start = j*16; var end = j*16+16; if(j*16+16 > bytesIn.length) end = bytesIn.length; byteArray = this.getBlock(bytesIn,start,end,mode); if (mode == this.modeOfOperation.CFB) { if (firstRound) { output = this.aes.encrypt(iv, key, size); firstRound = false; } else output = this.aes.encrypt(input, key, size); for (var i = 0; i < 16; i++) ciphertext[i] = byteArray[i] ^ output[i]; for(var k = 0;k < end-start;k++) cipherOut.push(ciphertext[k]); input = ciphertext; } else if (mode == this.modeOfOperation.OFB) { if (firstRound) { output = this.aes.encrypt(iv, key, size); firstRound = false; } else output = this.aes.encrypt(input, key, size); for (var i = 0; i < 16; i++) ciphertext[i] = byteArray[i] ^ output[i]; for(var k = 0;k < end-start;k++) cipherOut.push(ciphertext[k]); input = output; } else if (mode == this.modeOfOperation.CBC) { for (var i = 0; i < 16; i++) input[i] = byteArray[i] ^ ((firstRound) ? iv[i] : ciphertext[i]); firstRound = false; ciphertext = this.aes.encrypt(input, key, size); // always 16 bytes because of the padding for CBC for(var k = 0;k < 16;k++) cipherOut.push(ciphertext[k]); } } } return cipherOut; }, /* * Mode of Operation Decryption * cipherIn - Encrypted String as array of bytes * originalsize - The unencrypted string length - required for CBC * mode - mode of type modeOfOperation * key - a number array of length 'size' * size - the bit length of the key * iv - the 128 bit number array Initialization Vector */ decrypt:function(cipherIn,mode,key,iv) { var size = key.length; if(iv.length%16) { throw 'iv length must be 128 bits.'; } // the AES input/output var ciphertext = []; var input = []; var output = []; var byteArray = []; var bytesOut = []; // char firstRound var firstRound = true; if (cipherIn !== null) { for (var j = 0;j < Math.ceil(cipherIn.length/16); j++) { var start = j*16; var end = j*16+16; if(j*16+16 > cipherIn.length) end = cipherIn.length; ciphertext = this.getBlock(cipherIn,start,end,mode); if (mode == this.modeOfOperation.CFB) { if (firstRound) { output = this.aes.encrypt(iv, key, size); firstRound = false; } else output = this.aes.encrypt(input, key, size); for (i = 0; i < 16; i++) byteArray[i] = output[i] ^ ciphertext[i]; for(var k = 0;k < end-start;k++) bytesOut.push(byteArray[k]); input = ciphertext; } else if (mode == this.modeOfOperation.OFB) { if (firstRound) { output = this.aes.encrypt(iv, key, size); firstRound = false; } else output = this.aes.encrypt(input, key, size); for (i = 0; i < 16; i++) byteArray[i] = output[i] ^ ciphertext[i]; for(var k = 0;k < end-start;k++) bytesOut.push(byteArray[k]); input = output; } else if(mode == this.modeOfOperation.CBC) { output = this.aes.decrypt(ciphertext, key, size); for (i = 0; i < 16; i++) byteArray[i] = ((firstRound) ? iv[i] : input[i]) ^ output[i]; firstRound = false; for(var k = 0;k < end-start;k++) bytesOut.push(byteArray[k]); input = ciphertext; } } if(mode == this.modeOfOperation.CBC) this.unpadBytesOut(bytesOut); } return bytesOut; }, padBytesIn: function(data) { var len = data.length; var padByte = 16 - (len % 16); for (var i = 0; i < padByte; i++) { data.push(padByte); } }, unpadBytesOut: function(data) { var padCount = 0; var padByte = -1; var blockSize = 16; for (var i = data.length - 1; i >= data.length-1 - blockSize; i--) { if (data[i] <= blockSize) { if (padByte == -1) padByte = data[i]; if (data[i] != padByte) { padCount = 0; break; } padCount++; } else break; if (padCount == padByte) break; } if (padCount > 0) data.splice(data.length - padCount, padCount); } /* * END MODE OF OPERATION SECTION */ }; /* CryptoJS v3.1.2 code.google.com/p/crypto-js (c) 2009-2013 by Jeff Mott. All rights reserved. code.google.com/p/crypto-js/wiki/License */ /** * CryptoJS core components. */ var CryptoJS = CryptoJS || (function (Math, undefined) { /** * CryptoJS namespace. */ var C = {}; /** * Library namespace. */ var C_lib = C.lib = {}; /** * Base object for prototypal inheritance. */ var Base = C_lib.Base = (function () { function F() {} return { /** * Creates a new object that inherits from this object. * * @param {Object} overrides Properties to copy into the new object. * * @return {Object} The new object. * * @static * * @example * * var MyType = CryptoJS.lib.Base.extend({ * field: 'value', * * method: function () { * } * }); */ extend: function (overrides) { // Spawn F.prototype = this; var subtype = new F(); // Augment if (overrides) { subtype.mixIn(overrides); } // Create default initializer if (!subtype.hasOwnProperty('init')) { subtype.init = function () { subtype.$super.init.apply(this, arguments); }; } // Initializer's prototype is the subtype object subtype.init.prototype = subtype; // Reference supertype subtype.$super = this; return subtype; }, /** * Extends this object and runs the init method. * Arguments to create() will be passed to init(). * * @return {Object} The new object. * * @static * * @example * * var instance = MyType.create(); */ create: function () { var instance = this.extend(); instance.init.apply(instance, arguments); return instance; }, /** * Initializes a newly created object. * Override this method to add some logic when your objects are created. * * @example * * var MyType = CryptoJS.lib.Base.extend({ * init: function () { * // ... * } * }); */ init: function () { }, /** * Copies properties into this object. * * @param {Object} properties The properties to mix in. * * @example * * MyType.mixIn({ * field: 'value' * }); */ mixIn: function (properties) { for (var propertyName in properties) { if (properties.hasOwnProperty(propertyName)) { this[propertyName] = properties[propertyName]; } } // IE won't copy toString using the loop above if (properties.hasOwnProperty('toString')) { this.toString = properties.toString; } }, /** * Creates a copy of this object. * * @return {Object} The clone. * * @example * * var clone = instance.clone(); */ clone: function () { return this.init.prototype.extend(this); } }; }()); /** * An array of 32-bit words. * * @property {Array} words The array of 32-bit words. * @property {number} sigBytes The number of significant bytes in this word array. */ var WordArray = C_lib.WordArray = Base.extend({ /** * Initializes a newly created word array. * * @param {Array} words (Optional) An array of 32-bit words. * @param {number} sigBytes (Optional) The number of significant bytes in the words. * * @example * * var wordArray = CryptoJS.lib.WordArray.create(); * var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607]); * var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607], 6); */ init: function (words, sigBytes) { words = this.words = words || []; if (sigBytes != undefined) { this.sigBytes = sigBytes; } else { this.sigBytes = words.length * 4; } }, /** * Converts this word array to a string. * * @param {Encoder} encoder (Optional) The encoding strategy to use. Default: CryptoJS.enc.Hex * * @return {string} The stringified word array. * * @example * * var string = wordArray + ''; * var string = wordArray.toString(); * var string = wordArray.toString(CryptoJS.enc.Utf8); */ toString: function (encoder) { return (encoder || Hex).stringify(this); }, /** * Concatenates a word array to this word array. * * @param {WordArray} wordArray The word array to append. * * @return {WordArray} This word array. * * @example * * wordArray1.concat(wordArray2); */ concat: function (wordArray) { // Shortcuts var thisWords = this.words; var thatWords = wordArray.words; var thisSigBytes = this.sigBytes; var thatSigBytes = wordArray.sigBytes; // Clamp excess bits this.clamp(); // Concat if (thisSigBytes % 4) { // Copy one byte at a time for (var i = 0; i < thatSigBytes; i++) { var thatByte = (thatWords[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff; thisWords[(thisSigBytes + i) >>> 2] |= thatByte << (24 - ((thisSigBytes + i) % 4) * 8); } } else if (thatWords.length > 0xffff) { // Copy one word at a time for (var i = 0; i < thatSigBytes; i += 4) { thisWords[(thisSigBytes + i) >>> 2] = thatWords[i >>> 2]; } } else { // Copy all words at once thisWords.push.apply(thisWords, thatWords); } this.sigBytes += thatSigBytes; // Chainable return this; }, /** * Removes insignificant bits. * * @example * * wordArray.clamp(); */ clamp: function () { // Shortcuts var words = this.words; var sigBytes = this.sigBytes; // Clamp words[sigBytes >>> 2] &= 0xffffffff << (32 - (sigBytes % 4) * 8); words.length = Math.ceil(sigBytes / 4); }, /** * Creates a copy of this word array. * * @return {WordArray} The clone. * * @example * * var clone = wordArray.clone(); */ clone: function () { var clone = Base.clone.call(this); clone.words = this.words.slice(0); return clone; }, /** * Creates a word array filled with random bytes. * * @param {number} nBytes The number of random bytes to generate. * * @return {WordArray} The random word array. * * @static * * @example * * var wordArray = CryptoJS.lib.WordArray.random(16); */ random: function (nBytes) { var words = []; for (var i = 0; i < nBytes; i += 4) { words.push((Math.random() * 0x100000000) | 0); } return new WordArray.init(words, nBytes); } }); /** * Encoder namespace. */ var C_enc = C.enc = {}; /** * Hex encoding strategy. */ var Hex = C_enc.Hex = { /** * Converts a word array to a hex string. * * @param {WordArray} wordArray The word array. * * @return {string} The hex string. * * @static * * @example * * var hexString = CryptoJS.enc.Hex.stringify(wordArray); */ stringify: function (wordArray) { // Shortcuts var words = wordArray.words; var sigBytes = wordArray.sigBytes; // Convert var hexChars = []; for (var i = 0; i < sigBytes; i++) { var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff; hexChars.push((bite >>> 4).toString(16)); hexChars.push((bite & 0x0f).toString(16)); } return hexChars.join(''); }, /** * Converts a hex string to a word array. * * @param {string} hexStr The hex string. * * @return {WordArray} The word array. * * @static * * @example * * var wordArray = CryptoJS.enc.Hex.parse(hexString); */ parse: function (hexStr) { // Shortcut var hexStrLength = hexStr.length; // Convert var words = []; for (var i = 0; i < hexStrLength; i += 2) { words[i >>> 3] |= parseInt(hexStr.substr(i, 2), 16) << (24 - (i % 8) * 4); } return new WordArray.init(words, hexStrLength / 2); } }; /** * Latin1 encoding strategy. */ var Latin1 = C_enc.Latin1 = { /** * Converts a word array to a Latin1 string. * * @param {WordArray} wordArray The word array. * * @return {string} The Latin1 string. * * @static * * @example * * var latin1String = CryptoJS.enc.Latin1.stringify(wordArray); */ stringify: function (wordArray) { // Shortcuts var words = wordArray.words; var sigBytes = wordArray.sigBytes; // Convert var latin1Chars = []; for (var i = 0; i < sigBytes; i++) { var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff; latin1Chars.push(String.fromCharCode(bite)); } return latin1Chars.join(''); }, /** * Converts a Latin1 string to a word array. * * @param {string} latin1Str The Latin1 string. * * @return {WordArray} The word array. * * @static * * @example * * var wordArray = CryptoJS.enc.Latin1.parse(latin1String); */ parse: function (latin1Str) { // Shortcut var latin1StrLength = latin1Str.length; // Convert var words = []; for (var i = 0; i < latin1StrLength; i++) { words[i >>> 2] |= (latin1Str.charCodeAt(i) & 0xff) << (24 - (i % 4) * 8); } return new WordArray.init(words, latin1StrLength); } }; /** * UTF-8 encoding strategy. */ var Utf8 = C_enc.Utf8 = { /** * Converts a word array to a UTF-8 string. * * @param {WordArray} wordArray The word array. * * @return {string} The UTF-8 string. * * @static * * @example * * var utf8String = CryptoJS.enc.Utf8.stringify(wordArray); */ stringify: function (wordArray) { try { return decodeURIComponent(escape(Latin1.stringify(wordArray))); } catch (e) { throw new Error('Malformed UTF-8 data'); } }, /** * Converts a UTF-8 string to a word array. * * @param {string} utf8Str The UTF-8 string. * * @return {WordArray} The word array. * * @static * * @example * * var wordArray = CryptoJS.enc.Utf8.parse(utf8String); */ parse: function (utf8Str) { return Latin1.parse(unescape(encodeURIComponent(utf8Str))); } }; /** * Abstract buffered block algorithm template. * * The property blockSize must be implemented in a concrete subtype. * * @property {number} _minBufferSize The number of blocks that should be kept unprocessed in the buffer. Default: 0 */ var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm = Base.extend({ /** * Resets this block algorithm's data buffer to its initial state. * * @example * * bufferedBlockAlgorithm.reset(); */ reset: function () { // Initial values this._data = new WordArray.init(); this._nDataBytes = 0; }, /** * Adds new data to this block algorithm's buffer. * * @param {WordArray|string} data The data to append. Strings are converted to a WordArray using UTF-8. * * @example * * bufferedBlockAlgorithm._append('data'); * bufferedBlockAlgorithm._append(wordArray); */ _append: function (data) { // Convert string to WordArray, else assume WordArray already if (typeof data == 'string') { data = Utf8.parse(data); } // Append this._data.concat(data); this._nDataBytes += data.sigBytes; }, /** * Processes available data blocks. * * This method invokes _doProcessBlock(offset), which must be implemented by a concrete subtype. * * @param {boolean} doFlush Whether all blocks and partial blocks should be processed. * * @return {WordArray} The processed data. * * @example * * var processedData = bufferedBlockAlgorithm._process(); * var processedData = bufferedBlockAlgorithm._process(!!'flush'); */ _process: function (doFlush) { // Shortcuts var data = this._data; var dataWords = data.words; var dataSigBytes = data.sigBytes; var blockSize = this.blockSize; var blockSizeBytes = blockSize * 4; // Count blocks ready var nBlocksReady = dataSigBytes / blockSizeBytes; if (doFlush) { // Round up to include partial blocks nBlocksReady = Math.ceil(nBlocksReady); } else { // Round down to include only full blocks, // less the number of blocks that must remain in the buffer nBlocksReady = Math.max((nBlocksReady | 0) - this._minBufferSize, 0); } // Count words ready var nWordsReady = nBlocksReady * blockSize; // Count bytes ready var nBytesReady = Math.min(nWordsReady * 4, dataSigBytes); // Process blocks if (nWordsReady) { for (var offset = 0; offset < nWordsReady; offset += blockSize) { // Perform concrete-algorithm logic this._doProcessBlock(dataWords, offset); } // Remove processed words var processedWords = dataWords.splice(0, nWordsReady); data.sigBytes -= nBytesReady; } // Return processed words return new WordArray.init(processedWords, nBytesReady); }, /** * Creates a copy of this object. * * @return {Object} The clone. * * @example * * var clone = bufferedBlockAlgorithm.clone(); */ clone: function () { var clone = Base.clone.call(this); clone._data = this._data.clone(); return clone; }, _minBufferSize: 0 }); /** * Abstract hasher template. * * @property {number} blockSize The number of 32-bit words this hasher operates on. Default: 16 (512 bits) */ var Hasher = C_lib.Hasher = BufferedBlockAlgorithm.extend({ /** * Configuration options. */ cfg: Base.extend(), /** * Initializes a newly created hasher. * * @param {Object} cfg (Optional) The configuration options to use for this hash computation. * * @example * * var hasher = CryptoJS.algo.SHA256.create(); */ init: function (cfg) { // Apply config defaults this.cfg = this.cfg.extend(cfg); // Set initial values this.reset(); }, /** * Resets this hasher to its initial state. * * @example * * hasher.reset(); */ reset: function () { // Reset data buffer BufferedBlockAlgorithm.reset.call(this); // Perform concrete-hasher logic this._doReset(); }, /** * Updates this hasher with a message. * * @param {WordArray|string} messageUpdate The message to append. * * @return {Hasher} This hasher. * * @example * * hasher.update('message'); * hasher.update(wordArray); */ update: function (messageUpdate) { // Append this._append(messageUpdate); // Update the hash this._process(); // Chainable return this; }, /** * Finalizes the hash computation. * Note that the finalize operation is effectively a destructive, read-once operation. * * @param {WordArray|string} messageUpdate (Optional) A final message update. * * @return {WordArray} The hash. * * @example * * var hash = hasher.finalize(); * var hash = hasher.finalize('message'); * var hash = hasher.finalize(wordArray); */ finalize: function (messageUpdate) { // Final message update if (messageUpdate) { this._append(messageUpdate); } // Perform concrete-hasher logic var hash = this._doFinalize(); return hash; }, blockSize: 512/32, /** * Creates a shortcut function to a hasher's object interface. * * @param {Hasher} hasher The hasher to create a helper for. * * @return {Function} The shortcut function. * * @static * * @example * * var SHA256 = CryptoJS.lib.Hasher._createHelper(CryptoJS.algo.SHA256); */ _createHelper: function (hasher) { return function (message, cfg) { return new hasher.init(cfg).finalize(message); }; }, /** * Creates a shortcut function to the HMAC's object interface. * * @param {Hasher} hasher The hasher to use in this HMAC helper. * * @return {Function} The shortcut function. * * @static * * @example * * var HmacSHA256 = CryptoJS.lib.Hasher._createHmacHelper(CryptoJS.algo.SHA256); */ _createHmacHelper: function (hasher) { return function (message, key) { return new C_algo.HMAC.init(hasher, key).finalize(message); }; } }); /** * Algorithm namespace. */ var C_algo = C.algo = {}; return C; }(Math)); /* CryptoJS v3.1.2 code.google.com/p/crypto-js (c) 2009-2013 by Jeff Mott. All rights reserved. code.google.com/p/crypto-js/wiki/License */ (function (Math) { // Shortcuts var C = CryptoJS; var C_lib = C.lib; var WordArray = C_lib.WordArray; var Hasher = C_lib.Hasher; var C_algo = C.algo; // Initialization and round constants tables var H = []; var K = []; // Compute constants (function () { function isPrime(n) { var sqrtN = Math.sqrt(n); for (var factor = 2; factor <= sqrtN; factor++) { if (!(n % factor)) { return false; } } return true; } function getFractionalBits(n) { return ((n - (n | 0)) * 0x100000000) | 0; } var n = 2; var nPrime = 0; while (nPrime < 64) { if (isPrime(n)) { if (nPrime < 8) { H[nPrime] = getFractionalBits(Math.pow(n, 1 / 2)); } K[nPrime] = getFractionalBits(Math.pow(n, 1 / 3)); nPrime++; } n++; } }()); // Reusable object var W = []; /** * SHA-256 hash algorithm. */ var SHA256 = C_algo.SHA256 = Hasher.extend({ _doReset: function () { this._hash = new WordArray.init(H.slice(0)); }, _doProcessBlock: function (M, offset) { // Shortcut var H = this._hash.words; // Working variables var a = H[0]; var b = H[1]; var c = H[2]; var d = H[3]; var e = H[4]; var f = H[5]; var g = H[6]; var h = H[7]; // Computation for (var i = 0; i < 64; i++) { if (i < 16) { W[i] = M[offset + i] | 0; } else { var gamma0x = W[i - 15]; var gamma0 = ((gamma0x << 25) | (gamma0x >>> 7)) ^ ((gamma0x << 14) | (gamma0x >>> 18)) ^ (gamma0x >>> 3); var gamma1x = W[i - 2]; var gamma1 = ((gamma1x << 15) | (gamma1x >>> 17)) ^ ((gamma1x << 13) | (gamma1x >>> 19)) ^ (gamma1x >>> 10); W[i] = gamma0 + W[i - 7] + gamma1 + W[i - 16]; } var ch = (e & f) ^ (~e & g); var maj = (a & b) ^ (a & c) ^ (b & c); var sigma0 = ((a << 30) | (a >>> 2)) ^ ((a << 19) | (a >>> 13)) ^ ((a << 10) | (a >>> 22)); var sigma1 = ((e << 26) | (e >>> 6)) ^ ((e << 21) | (e >>> 11)) ^ ((e << 7) | (e >>> 25)); var t1 = h + sigma1 + ch + K[i] + W[i]; var t2 = sigma0 + maj; h = g; g = f; f = e; e = (d + t1) | 0; d = c; c = b; b = a; a = (t1 + t2) | 0; } // Intermediate hash value H[0] = (H[0] + a) | 0; H[1] = (H[1] + b) | 0; H[2] = (H[2] + c) | 0; H[3] = (H[3] + d) | 0; H[4] = (H[4] + e) | 0; H[5] = (H[5] + f) | 0; H[6] = (H[6] + g) | 0; H[7] = (H[7] + h) | 0; }, _doFinalize: function () { // Shortcuts var data = this._data; var dataWords = data.words; var nBitsTotal = this._nDataBytes * 8; var nBitsLeft = data.sigBytes * 8; // Add padding dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32); dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = Math.floor(nBitsTotal / 0x100000000); dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = nBitsTotal; data.sigBytes = dataWords.length * 4; // Hash final blocks this._process(); // Return final computed hash return this._hash; }, clone: function () { var clone = Hasher.clone.call(this); clone._hash = this._hash.clone(); return clone; } }); /** * Shortcut function to the hasher's object interface. * * @param {WordArray|string} message The message to hash. * * @return {WordArray} The hash. * * @static * * @example * * var hash = CryptoJS.SHA256('message'); * var hash = CryptoJS.SHA256(wordArray); */ C.SHA256 = Hasher._createHelper(SHA256); /** * Shortcut function to the HMAC's object interface. * * @param {WordArray|string} message The message to hash. * @param {WordArray|string} key The secret key. * * @return {WordArray} The HMAC. * * @static * * @example * * var hmac = CryptoJS.HmacSHA256(message, key); */ C.HmacSHA256 = Hasher._createHmacHelper(SHA256); }(Math)); /* * JavaScript implementation of Password-Based Key Derivation Function 2 * (PBKDF2) as defined in RFC 2898. * Version 1.5 * Copyright (c) 2007, 2008, 2009, 2010, 2011, 2012, 2013 Parvez Anandam * parvez@anandam.com * http://anandam.com/pbkdf2 * * Distributed under the BSD license * * Uses Paul Johnston's excellent SHA-1 JavaScript library sha1.js: * http://pajhome.org.uk/crypt/md5/sha1.html * (uses the binb_sha1(), rstr2binb(), binb2str(), rstr2hex() functions from that libary) * * Thanks to Felix Gartsman for pointing out a bug in version 1.0 * Thanks to Thijs Van der Schaeghe for pointing out a bug in version 1.1 * Thanks to Richard Gautier for asking to clarify dependencies in version 1.2 * Updated contact information from version 1.3 * Thanks to Stuart Heinrich for pointing out updates to PAJ's SHA-1 library in version 1.4 */ /* * The four arguments to the constructor of the PBKDF2 object are * the password, salt, number of iterations and number of bytes in * generated key. This follows the RFC 2898 definition: PBKDF2 (P, S, c, dkLen) * * The method deriveKey takes two parameters, both callback functions: * the first is used to provide status on the computation, the second * is called with the result of the computation (the generated key in hex). * * Example of use: * * * * *
* */ function PBKDF2(password, salt, num_iterations, num_bytes) { // Remember the password and salt var m_bpassword = rstr2binb(password); var m_salt = salt; // Total number of iterations var m_total_iterations = num_iterations; // Run iterations in chunks instead of all at once, so as to not block. // Define size of chunk here; adjust for slower or faster machines if necessary. var m_iterations_in_chunk = 10; // Iteration counter var m_iterations_done = 0; // Key length, as number of bytes var m_key_length = num_bytes; // The hash cache var m_hash = null; // The length (number of bytes) of the output of the pseudo-random function. // Since HMAC-SHA1 is the standard, and what is used here, it's 20 bytes. var m_hash_length = 20; // Number of hash-sized blocks in the derived key (called 'l' in RFC2898) var m_total_blocks = Math.ceil(m_key_length/m_hash_length); // Start computation with the first block var m_current_block = 1; // Used in the HMAC-SHA1 computations var m_ipad = new Array(16); var m_opad = new Array(16); // This is where the result of the iterations gets sotred var m_buffer = new Array(0x0,0x0,0x0,0x0,0x0); // The result var m_key = ""; // This object var m_this_object = this; // The function to call with the result var m_result_func; // The function to call with status after computing every chunk var m_status_func; // Set up the HMAC-SHA1 computations if (m_bpassword.length > 16) m_bpassword = binb_sha1(m_bpassword, password.length * chrsz); for(var i = 0; i < 16; ++i) { m_ipad[i] = m_bpassword[i] ^ 0x36363636; m_opad[i] = m_bpassword[i] ^ 0x5C5C5C5C; } // Starts the computation this.deriveKey = function(status_callback, result_callback) { m_status_func = status_callback; m_result_func = result_callback; setTimeout(function() { m_this_object.do_PBKDF2_iterations() }, 0); } // The workhorse this.do_PBKDF2_iterations = function() { var iterations = m_iterations_in_chunk; if (m_total_iterations - m_iterations_done < m_iterations_in_chunk) iterations = m_total_iterations - m_iterations_done; for(var i=0; i> 24 & 0xF) + String.fromCharCode(m_current_block >> 16 & 0xF) + String.fromCharCode(m_current_block >> 8 & 0xF) + String.fromCharCode(m_current_block & 0xF); m_hash = binb_sha1(m_ipad.concat(rstr2binb(salt_block)), 512 + salt_block.length * 8); m_hash = binb_sha1(m_opad.concat(m_hash), 512 + 160); } else { m_hash = binb_sha1(m_ipad.concat(m_hash), 512 + m_hash.length * 32); m_hash = binb_sha1(m_opad.concat(m_hash), 512 + 160); } for(var j=0; j= 0) { var v = x*this[i++]+w[j]+c; c = Math.floor(v/0x4000000); w[j++] = v&0x3ffffff; } return c; } // am2 avoids a big mult-and-extract completely. // Max digit bits should be <= 30 because we do bitwise ops // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) function am2(i,x,w,j,c,n) { var xl = x&0x7fff, xh = x>>15; while(--n >= 0) { var l = this[i]&0x7fff; var h = this[i++]>>15; var m = xh*l+h*xl; l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); w[j++] = l&0x3fffffff; } return c; } // Alternately, set max digit bits to 28 since some // browsers slow down when dealing with 32-bit numbers. function am3(i,x,w,j,c,n) { var xl = x&0x3fff, xh = x>>14; while(--n >= 0) { var l = this[i]&0x3fff; var h = this[i++]>>14; var m = xh*l+h*xl; l = xl*l+((m&0x3fff)<<14)+w[j]+c; c = (l>>28)+(m>>14)+xh*h; w[j++] = l&0xfffffff; } return c; } if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { BigInteger.prototype.am = am2; dbits = 30; } else if(j_lm && (navigator.appName != "Netscape")) { BigInteger.prototype.am = am1; dbits = 26; } else { // Mozilla/Netscape seems to prefer am3 BigInteger.prototype.am = am3; dbits = 28; } BigInteger.prototype.DB = dbits; BigInteger.prototype.DM = ((1<= 0; --i) r[i] = this[i]; r.t = this.t; r.s = this.s; } // (protected) set from integer value x, -DV <= x < DV function bnpFromInt(x) { this.t = 1; this.s = (x<0)?-1:0; if(x > 0) this[0] = x; else if(x < -1) this[0] = x+this.DV; else this.t = 0; } // return bigint initialized to value function nbv(i) { var r = nbi(); r.fromInt(i); return r; } // (protected) set from string and radix function bnpFromString(s,b) { var k; if(b == 16) k = 4; else if(b == 8) k = 3; else if(b == 256) k = 8; // byte array else if(b == 2) k = 1; else if(b == 32) k = 5; else if(b == 4) k = 2; else { this.fromRadix(s,b); return; } this.t = 0; this.s = 0; var i = s.length, mi = false, sh = 0; while(--i >= 0) { var x = (k==8)?s[i]&0xff:intAt(s,i); if(x < 0) { if(s.charAt(i) == "-") mi = true; continue; } mi = false; if(sh == 0) this[this.t++] = x; else if(sh+k > this.DB) { this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<>(this.DB-sh)); } else this[this.t-1] |= x<= this.DB) sh -= this.DB; } if(k == 8 && (s[0]&0x80) != 0) { this.s = -1; if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)< 0 && this[this.t-1] == c) --this.t; } // (public) return string representation in given radix function bnToString(b) { if(this.s < 0) return "-"+this.negate().toString(b); var k; if(b == 16) k = 4; else if(b == 8) k = 3; else if(b == 2) k = 1; else if(b == 32) k = 5; else if(b == 4) k = 2; else return this.toRadix(b); var km = (1< 0) { if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); } while(i >= 0) { if(p < k) { d = (this[i]&((1<>(p+=this.DB-k); } else { d = (this[i]>>(p-=k))&km; if(p <= 0) { p += this.DB; --i; } } if(d > 0) m = true; if(m) r += int2char(d); } } return m?r:"0"; } // (public) -this function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } // (public) |this| function bnAbs() { return (this.s<0)?this.negate():this; } // (public) return + if this > a, - if this < a, 0 if equal function bnCompareTo(a) { var r = this.s-a.s; if(r != 0) return r; var i = this.t; r = i-a.t; if(r != 0) return (this.s<0)?-r:r; while(--i >= 0) if((r=this[i]-a[i]) != 0) return r; return 0; } // returns bit length of the integer x function nbits(x) { var r = 1, t; if((t=x>>>16) != 0) { x = t; r += 16; } if((t=x>>8) != 0) { x = t; r += 8; } if((t=x>>4) != 0) { x = t; r += 4; } if((t=x>>2) != 0) { x = t; r += 2; } if((t=x>>1) != 0) { x = t; r += 1; } return r; } // (public) return the number of bits in "this" function bnBitLength() { if(this.t <= 0) return 0; return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM)); } // (protected) r = this << n*DB function bnpDLShiftTo(n,r) { var i; for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; for(i = n-1; i >= 0; --i) r[i] = 0; r.t = this.t+n; r.s = this.s; } // (protected) r = this >> n*DB function bnpDRShiftTo(n,r) { for(var i = n; i < this.t; ++i) r[i-n] = this[i]; r.t = Math.max(this.t-n,0); r.s = this.s; } // (protected) r = this << n function bnpLShiftTo(n,r) { var bs = n%this.DB; var cbs = this.DB-bs; var bm = (1<= 0; --i) { r[i+ds+1] = (this[i]>>cbs)|c; c = (this[i]&bm)<= 0; --i) r[i] = 0; r[ds] = c; r.t = this.t+ds+1; r.s = this.s; r.clamp(); } // (protected) r = this >> n function bnpRShiftTo(n,r) { r.s = this.s; var ds = Math.floor(n/this.DB); if(ds >= this.t) { r.t = 0; return; } var bs = n%this.DB; var cbs = this.DB-bs; var bm = (1<>bs; for(var i = ds+1; i < this.t; ++i) { r[i-ds-1] |= (this[i]&bm)<>bs; } if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<>= this.DB; } if(a.t < this.t) { c -= a.s; while(i < this.t) { c += this[i]; r[i++] = c&this.DM; c >>= this.DB; } c += this.s; } else { c += this.s; while(i < a.t) { c -= a[i]; r[i++] = c&this.DM; c >>= this.DB; } c -= a.s; } r.s = (c<0)?-1:0; if(c < -1) r[i++] = this.DV+c; else if(c > 0) r[i++] = c; r.t = i; r.clamp(); } // (protected) r = this * a, r != this,a (HAC 14.12) // "this" should be the larger one if appropriate. function bnpMultiplyTo(a,r) { var x = this.abs(), y = a.abs(); var i = x.t; r.t = i+y.t; while(--i >= 0) r[i] = 0; for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); r.s = 0; r.clamp(); if(this.s != a.s) BigInteger.ZERO.subTo(r,r); } // (protected) r = this^2, r != this (HAC 14.16) function bnpSquareTo(r) { var x = this.abs(); var i = r.t = 2*x.t; while(--i >= 0) r[i] = 0; for(i = 0; i < x.t-1; ++i) { var c = x.am(i,x[i],r,2*i,0,1); if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { r[i+x.t] -= x.DV; r[i+x.t+1] = 1; } } if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); r.s = 0; r.clamp(); } // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) // r != q, this != m. q or r may be null. function bnpDivRemTo(m,q,r) { var pm = m.abs(); if(pm.t <= 0) return; var pt = this.abs(); if(pt.t < pm.t) { if(q != null) q.fromInt(0); if(r != null) this.copyTo(r); return; } if(r == null) r = nbi(); var y = nbi(), ts = this.s, ms = m.s; var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } else { pm.copyTo(y); pt.copyTo(r); } var ys = y.t; var y0 = y[ys-1]; if(y0 == 0) return; var yt = y0*(1<1)?y[ys-2]>>this.F2:0); var d1 = this.FV/yt, d2 = (1<= 0) { r[r.t++] = 1; r.subTo(t,r); } BigInteger.ONE.dlShiftTo(ys,t); t.subTo(y,y); // "negative" y so we can replace sub with am later while(y.t < ys) y[y.t++] = 0; while(--j >= 0) { // Estimate quotient digit var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out y.dlShiftTo(j,t); r.subTo(t,r); while(r[i] < --qd) r.subTo(t,r); } } if(q != null) { r.drShiftTo(ys,q); if(ts != ms) BigInteger.ZERO.subTo(q,q); } r.t = ys; r.clamp(); if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder if(ts < 0) BigInteger.ZERO.subTo(r,r); } // (public) this mod a function bnMod(a) { var r = nbi(); this.abs().divRemTo(a,null,r); if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); return r; } // Modular reduction using "classic" algorithm function Classic(m) { this.m = m; } function cConvert(x) { if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); else return x; } function cRevert(x) { return x; } function cReduce(x) { x.divRemTo(this.m,null,x); } function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } Classic.prototype.convert = cConvert; Classic.prototype.revert = cRevert; Classic.prototype.reduce = cReduce; Classic.prototype.mulTo = cMulTo; Classic.prototype.sqrTo = cSqrTo; // (protected) return "-1/this % 2^DB"; useful for Mont. reduction // justification: // xy == 1 (mod m) // xy = 1+km // xy(2-xy) = (1+km)(1-km) // x[y(2-xy)] = 1-k^2m^2 // x[y(2-xy)] == 1 (mod m^2) // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. // JS multiply "overflows" differently from C/C++, so care is needed here. function bnpInvDigit() { if(this.t < 1) return 0; var x = this[0]; if((x&1) == 0) return 0; var y = x&3; // y == 1/x mod 2^2 y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 // last step - calculate inverse mod DV directly; // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits // we really want the negative inverse, and -DV < y < DV return (y>0)?this.DV-y:-y; } // Montgomery reduction function Montgomery(m) { this.m = m; this.mp = m.invDigit(); this.mpl = this.mp&0x7fff; this.mph = this.mp>>15; this.um = (1<<(m.DB-15))-1; this.mt2 = 2*m.t; } // xR mod m function montConvert(x) { var r = nbi(); x.abs().dlShiftTo(this.m.t,r); r.divRemTo(this.m,null,r); if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); return r; } // x/R mod m function montRevert(x) { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } // x = x/R mod m (HAC 14.32) function montReduce(x) { while(x.t <= this.mt2) // pad x so am has enough room later x[x.t++] = 0; for(var i = 0; i < this.m.t; ++i) { // faster way of calculating u0 = x[i]*mp mod DV var j = x[i]&0x7fff; var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM; // use am to combine the multiply-shift-add into one call j = i+this.m.t; x[j] += this.m.am(0,u0,x,i,0,this.m.t); // propagate carry while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } } x.clamp(); x.drShiftTo(this.m.t,x); if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); } // r = "x^2/R mod m"; x != r function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } // r = "xy/R mod m"; x,y != r function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } Montgomery.prototype.convert = montConvert; Montgomery.prototype.revert = montRevert; Montgomery.prototype.reduce = montReduce; Montgomery.prototype.mulTo = montMulTo; Montgomery.prototype.sqrTo = montSqrTo; // (protected) true iff this is even function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; } // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) function bnpExp(e,z) { if(e > 0xffffffff || e < 1) return BigInteger.ONE; var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; g.copyTo(r); while(--i >= 0) { z.sqrTo(r,r2); if((e&(1< 0) z.mulTo(r2,g,r); else { var t = r; r = r2; r2 = t; } } return z.revert(r); } // (public) this^e % m, 0 <= e < 2^32 function bnModPowInt(e,m) { var z; if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); return this.exp(e,z); } // protected BigInteger.prototype.copyTo = bnpCopyTo; BigInteger.prototype.fromInt = bnpFromInt; BigInteger.prototype.fromString = bnpFromString; BigInteger.prototype.clamp = bnpClamp; BigInteger.prototype.dlShiftTo = bnpDLShiftTo; BigInteger.prototype.drShiftTo = bnpDRShiftTo; BigInteger.prototype.lShiftTo = bnpLShiftTo; BigInteger.prototype.rShiftTo = bnpRShiftTo; BigInteger.prototype.subTo = bnpSubTo; BigInteger.prototype.multiplyTo = bnpMultiplyTo; BigInteger.prototype.squareTo = bnpSquareTo; BigInteger.prototype.divRemTo = bnpDivRemTo; BigInteger.prototype.invDigit = bnpInvDigit; BigInteger.prototype.isEven = bnpIsEven; BigInteger.prototype.exp = bnpExp; // public BigInteger.prototype.toString = bnToString; BigInteger.prototype.negate = bnNegate; BigInteger.prototype.abs = bnAbs; BigInteger.prototype.compareTo = bnCompareTo; BigInteger.prototype.bitLength = bnBitLength; BigInteger.prototype.mod = bnMod; BigInteger.prototype.modPowInt = bnModPowInt; // "constants" BigInteger.ZERO = nbv(0); BigInteger.ONE = nbv(1); /*! (c) Tom Wu | http://www-cs-students.stanford.edu/~tjw/jsbn/ */ // Copyright (c) 2005-2009 Tom Wu // All Rights Reserved. // See "LICENSE" for details. // Extended JavaScript BN functions, required for RSA private ops. // Version 1.1: new BigInteger("0", 10) returns "proper" zero // Version 1.2: square() API, isProbablePrime fix // (public) function bnClone() { var r = nbi(); this.copyTo(r); return r; } // (public) return value as integer function bnIntValue() { if(this.s < 0) { if(this.t == 1) return this[0]-this.DV; else if(this.t == 0) return -1; } else if(this.t == 1) return this[0]; else if(this.t == 0) return 0; // assumes 16 < DB < 32 return ((this[1]&((1<<(32-this.DB))-1))<>24; } // (public) return value as short (assumes DB>=16) function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; } // (protected) return x s.t. r^x < DV function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); } // (public) 0 if this == 0, 1 if this > 0 function bnSigNum() { if(this.s < 0) return -1; else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0; else return 1; } // (protected) convert to radix string function bnpToRadix(b) { if(b == null) b = 10; if(this.signum() == 0 || b < 2 || b > 36) return "0"; var cs = this.chunkSize(b); var a = Math.pow(b,cs); var d = nbv(a), y = nbi(), z = nbi(), r = ""; this.divRemTo(d,y,z); while(y.signum() > 0) { r = (a+z.intValue()).toString(b).substr(1) + r; y.divRemTo(d,y,z); } return z.intValue().toString(b) + r; } // (protected) convert from radix string function bnpFromRadix(s,b) { this.fromInt(0); if(b == null) b = 10; var cs = this.chunkSize(b); var d = Math.pow(b,cs), mi = false, j = 0, w = 0; for(var i = 0; i < s.length; ++i) { var x = intAt(s,i); if(x < 0) { if(s.charAt(i) == "-" && this.signum() == 0) mi = true; continue; } w = b*w+x; if(++j >= cs) { this.dMultiply(d); this.dAddOffset(w,0); j = 0; w = 0; } } if(j > 0) { this.dMultiply(Math.pow(b,j)); this.dAddOffset(w,0); } if(mi) BigInteger.ZERO.subTo(this,this); } // (protected) alternate constructor function bnpFromNumber(a,b,c) { if("number" == typeof b) { // new BigInteger(int,int,RNG) if(a < 2) this.fromInt(1); else { this.fromNumber(a,c); if(!this.testBit(a-1)) // force MSB set this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); if(this.isEven()) this.dAddOffset(1,0); // force odd while(!this.isProbablePrime(b)) { this.dAddOffset(2,0); if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this); } } } else { // new BigInteger(int,RNG) var x = new Array(), t = a&7; x.length = (a>>3)+1; b.nextBytes(x); if(t > 0) x[0] &= ((1< 0) { if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p) r[k++] = d|(this.s<<(this.DB-p)); while(i >= 0) { if(p < 8) { d = (this[i]&((1<>(p+=this.DB-8); } else { d = (this[i]>>(p-=8))&0xff; if(p <= 0) { p += this.DB; --i; } } if((d&0x80) != 0) d |= -256; if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; if(k > 0 || d != this.s) r[k++] = d; } } return r; } function bnEquals(a) { return(this.compareTo(a)==0); } function bnMin(a) { return(this.compareTo(a)<0)?this:a; } function bnMax(a) { return(this.compareTo(a)>0)?this:a; } // (protected) r = this op a (bitwise) function bnpBitwiseTo(a,op,r) { var i, f, m = Math.min(a.t,this.t); for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]); if(a.t < this.t) { f = a.s&this.DM; for(i = m; i < this.t; ++i) r[i] = op(this[i],f); r.t = this.t; } else { f = this.s&this.DM; for(i = m; i < a.t; ++i) r[i] = op(f,a[i]); r.t = a.t; } r.s = op(this.s,a.s); r.clamp(); } // (public) this & a function op_and(x,y) { return x&y; } function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; } // (public) this | a function op_or(x,y) { return x|y; } function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; } // (public) this ^ a function op_xor(x,y) { return x^y; } function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; } // (public) this & ~a function op_andnot(x,y) { return x&~y; } function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; } // (public) ~this function bnNot() { var r = nbi(); for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i]; r.t = this.t; r.s = ~this.s; return r; } // (public) this << n function bnShiftLeft(n) { var r = nbi(); if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r); return r; } // (public) this >> n function bnShiftRight(n) { var r = nbi(); if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r); return r; } // return index of lowest 1-bit in x, x < 2^31 function lbit(x) { if(x == 0) return -1; var r = 0; if((x&0xffff) == 0) { x >>= 16; r += 16; } if((x&0xff) == 0) { x >>= 8; r += 8; } if((x&0xf) == 0) { x >>= 4; r += 4; } if((x&3) == 0) { x >>= 2; r += 2; } if((x&1) == 0) ++r; return r; } // (public) returns index of lowest 1-bit (or -1 if none) function bnGetLowestSetBit() { for(var i = 0; i < this.t; ++i) if(this[i] != 0) return i*this.DB+lbit(this[i]); if(this.s < 0) return this.t*this.DB; return -1; } // return number of 1 bits in x function cbit(x) { var r = 0; while(x != 0) { x &= x-1; ++r; } return r; } // (public) return number of set bits function bnBitCount() { var r = 0, x = this.s&this.DM; for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x); return r; } // (public) true iff nth bit is set function bnTestBit(n) { var j = Math.floor(n/this.DB); if(j >= this.t) return(this.s!=0); return((this[j]&(1<<(n%this.DB)))!=0); } // (protected) this op (1<>= this.DB; } if(a.t < this.t) { c += a.s; while(i < this.t) { c += this[i]; r[i++] = c&this.DM; c >>= this.DB; } c += this.s; } else { c += this.s; while(i < a.t) { c += a[i]; r[i++] = c&this.DM; c >>= this.DB; } c += a.s; } r.s = (c<0)?-1:0; if(c > 0) r[i++] = c; else if(c < -1) r[i++] = this.DV+c; r.t = i; r.clamp(); } // (public) this + a function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; } // (public) this - a function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; } // (public) this * a function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; } // (public) this^2 function bnSquare() { var r = nbi(); this.squareTo(r); return r; } // (public) this / a function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; } // (public) this % a function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; } // (public) [this/a,this%a] function bnDivideAndRemainder(a) { var q = nbi(), r = nbi(); this.divRemTo(a,q,r); return new Array(q,r); } // (protected) this *= n, this >= 0, 1 < n < DV function bnpDMultiply(n) { this[this.t] = this.am(0,n-1,this,0,0,this.t); ++this.t; this.clamp(); } // (protected) this += n << w words, this >= 0 function bnpDAddOffset(n,w) { if(n == 0) return; while(this.t <= w) this[this.t++] = 0; this[w] += n; while(this[w] >= this.DV) { this[w] -= this.DV; if(++w >= this.t) this[this.t++] = 0; ++this[w]; } } // A "null" reducer function NullExp() {} function nNop(x) { return x; } function nMulTo(x,y,r) { x.multiplyTo(y,r); } function nSqrTo(x,r) { x.squareTo(r); } NullExp.prototype.convert = nNop; NullExp.prototype.revert = nNop; NullExp.prototype.mulTo = nMulTo; NullExp.prototype.sqrTo = nSqrTo; // (public) this^e function bnPow(e) { return this.exp(e,new NullExp()); } // (protected) r = lower n words of "this * a", a.t <= n // "this" should be the larger one if appropriate. function bnpMultiplyLowerTo(a,n,r) { var i = Math.min(this.t+a.t,n); r.s = 0; // assumes a,this >= 0 r.t = i; while(i > 0) r[--i] = 0; var j; for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t); for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i); r.clamp(); } // (protected) r = "this * a" without lower n words, n > 0 // "this" should be the larger one if appropriate. function bnpMultiplyUpperTo(a,n,r) { --n; var i = r.t = this.t+a.t-n; r.s = 0; // assumes a,this >= 0 while(--i >= 0) r[i] = 0; for(i = Math.max(n-this.t,0); i < a.t; ++i) r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n); r.clamp(); r.drShiftTo(1,r); } // Barrett modular reduction function Barrett(m) { // setup Barrett this.r2 = nbi(); this.q3 = nbi(); BigInteger.ONE.dlShiftTo(2*m.t,this.r2); this.mu = this.r2.divide(m); this.m = m; } function barrettConvert(x) { if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); else if(x.compareTo(this.m) < 0) return x; else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } } function barrettRevert(x) { return x; } // x = x mod m (HAC 14.42) function barrettReduce(x) { x.drShiftTo(this.m.t-1,this.r2); if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); } this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3); this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2); while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1); x.subTo(this.r2,x); while(x.compareTo(this.m) >= 0) x.subTo(this.m,x); } // r = x^2 mod m; x != r function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); } // r = x*y mod m; x,y != r function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } Barrett.prototype.convert = barrettConvert; Barrett.prototype.revert = barrettRevert; Barrett.prototype.reduce = barrettReduce; Barrett.prototype.mulTo = barrettMulTo; Barrett.prototype.sqrTo = barrettSqrTo; // (public) this^e % m (HAC 14.85) function bnModPow(e,m) { var i = e.bitLength(), k, r = nbv(1), z; if(i <= 0) return r; else if(i < 18) k = 1; else if(i < 48) k = 3; else if(i < 144) k = 4; else if(i < 768) k = 5; else k = 6; if(i < 8) z = new Classic(m); else if(m.isEven()) z = new Barrett(m); else z = new Montgomery(m); // precomputation var g = new Array(), n = 3, k1 = k-1, km = (1< 1) { var g2 = nbi(); z.sqrTo(g[1],g2); while(n <= km) { g[n] = nbi(); z.mulTo(g2,g[n-2],g[n]); n += 2; } } var j = e.t-1, w, is1 = true, r2 = nbi(), t; i = nbits(e[j])-1; while(j >= 0) { if(i >= k1) w = (e[j]>>(i-k1))&km; else { w = (e[j]&((1<<(i+1))-1))<<(k1-i); if(j > 0) w |= e[j-1]>>(this.DB+i-k1); } n = k; while((w&1) == 0) { w >>= 1; --n; } if((i -= n) < 0) { i += this.DB; --j; } if(is1) { // ret == 1, don't bother squaring or multiplying it g[w].copyTo(r); is1 = false; } else { while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } z.mulTo(r2,g[w],r); } while(j >= 0 && (e[j]&(1< 0) { x.rShiftTo(g,x); y.rShiftTo(g,y); } while(x.signum() > 0) { if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); if(x.compareTo(y) >= 0) { x.subTo(y,x); x.rShiftTo(1,x); } else { y.subTo(x,y); y.rShiftTo(1,y); } } if(g > 0) y.lShiftTo(g,y); return y; } // (protected) this % n, n < 2^26 function bnpModInt(n) { if(n <= 0) return 0; var d = this.DV%n, r = (this.s<0)?n-1:0; if(this.t > 0) if(d == 0) r = this[0]%n; else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n; return r; } // (public) 1/this % m (HAC 14.61) function bnModInverse(m) { var ac = m.isEven(); if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; var u = m.clone(), v = this.clone(); var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); while(u.signum() != 0) { while(u.isEven()) { u.rShiftTo(1,u); if(ac) { if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); } a.rShiftTo(1,a); } else if(!b.isEven()) b.subTo(m,b); b.rShiftTo(1,b); } while(v.isEven()) { v.rShiftTo(1,v); if(ac) { if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); } c.rShiftTo(1,c); } else if(!d.isEven()) d.subTo(m,d); d.rShiftTo(1,d); } if(u.compareTo(v) >= 0) { u.subTo(v,u); if(ac) a.subTo(c,a); b.subTo(d,b); } else { v.subTo(u,v); if(ac) c.subTo(a,c); d.subTo(b,d); } } if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; if(d.compareTo(m) >= 0) return d.subtract(m); if(d.signum() < 0) d.addTo(m,d); else return d; if(d.signum() < 0) return d.add(m); else return d; } var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997]; var lplim = (1<<26)/lowprimes[lowprimes.length-1]; // (public) test primality with certainty >= 1-.5^t function bnIsProbablePrime(t) { var i, x = this.abs(); if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) { for(i = 0; i < lowprimes.length; ++i) if(x[0] == lowprimes[i]) return true; return false; } if(x.isEven()) return false; i = 1; while(i < lowprimes.length) { var m = lowprimes[i], j = i+1; while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; m = x.modInt(m); while(i < j) if(m%lowprimes[i++] == 0) return false; } return x.millerRabin(t); } // (protected) true if probably prime (HAC 4.24, Miller-Rabin) function bnpMillerRabin(t) { var n1 = this.subtract(BigInteger.ONE); var k = n1.getLowestSetBit(); if(k <= 0) return false; var r = n1.shiftRight(k); t = (t+1)>>1; if(t > lowprimes.length) t = lowprimes.length; var a = nbi(); for(var i = 0; i < t; ++i) { //Pick bases at random, instead of starting at 2 a.fromInt(lowprimes[Math.floor(Math.random()*lowprimes.length)]); var y = a.modPow(r,this); if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { var j = 1; while(j++ < k && y.compareTo(n1) != 0) { y = y.modPowInt(2,this); if(y.compareTo(BigInteger.ONE) == 0) return false; } if(y.compareTo(n1) != 0) return false; } } return true; } // protected BigInteger.prototype.chunkSize = bnpChunkSize; BigInteger.prototype.toRadix = bnpToRadix; BigInteger.prototype.fromRadix = bnpFromRadix; BigInteger.prototype.fromNumber = bnpFromNumber; BigInteger.prototype.bitwiseTo = bnpBitwiseTo; BigInteger.prototype.changeBit = bnpChangeBit; BigInteger.prototype.addTo = bnpAddTo; BigInteger.prototype.dMultiply = bnpDMultiply; BigInteger.prototype.dAddOffset = bnpDAddOffset; BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; BigInteger.prototype.modInt = bnpModInt; BigInteger.prototype.millerRabin = bnpMillerRabin; // public BigInteger.prototype.clone = bnClone; BigInteger.prototype.intValue = bnIntValue; BigInteger.prototype.byteValue = bnByteValue; BigInteger.prototype.shortValue = bnShortValue; BigInteger.prototype.signum = bnSigNum; BigInteger.prototype.toByteArray = bnToByteArray; BigInteger.prototype.equals = bnEquals; BigInteger.prototype.min = bnMin; BigInteger.prototype.max = bnMax; BigInteger.prototype.and = bnAnd; BigInteger.prototype.or = bnOr; BigInteger.prototype.xor = bnXor; BigInteger.prototype.andNot = bnAndNot; BigInteger.prototype.not = bnNot; BigInteger.prototype.shiftLeft = bnShiftLeft; BigInteger.prototype.shiftRight = bnShiftRight; BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; BigInteger.prototype.bitCount = bnBitCount; BigInteger.prototype.testBit = bnTestBit; BigInteger.prototype.setBit = bnSetBit; BigInteger.prototype.clearBit = bnClearBit; BigInteger.prototype.flipBit = bnFlipBit; BigInteger.prototype.add = bnAdd; BigInteger.prototype.subtract = bnSubtract; BigInteger.prototype.multiply = bnMultiply; BigInteger.prototype.divide = bnDivide; BigInteger.prototype.remainder = bnRemainder; BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; BigInteger.prototype.modPow = bnModPow; BigInteger.prototype.modInverse = bnModInverse; BigInteger.prototype.pow = bnPow; BigInteger.prototype.gcd = bnGCD; BigInteger.prototype.isProbablePrime = bnIsProbablePrime; // JSBN-specific extension BigInteger.prototype.square = bnSquare; // BigInteger interfaces not implemented in jsbn: // BigInteger(int signum, byte[] magnitude) // double doubleValue() // float floatValue() // int hashCode() // long longValue() // static BigInteger valueOf(long val) /*! (c) Tom Wu | http://www-cs-students.stanford.edu/~tjw/jsbn/ */ var b64map="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; var b64pad="="; function hex2b64(h) { var i; var c; var ret = ""; for(i = 0; i+3 <= h.length; i+=3) { c = parseInt(h.substring(i,i+3),16); ret += b64map.charAt(c >> 6) + b64map.charAt(c & 63); } if(i+1 == h.length) { c = parseInt(h.substring(i,i+1),16); ret += b64map.charAt(c << 2); } else if(i+2 == h.length) { c = parseInt(h.substring(i,i+2),16); ret += b64map.charAt(c >> 2) + b64map.charAt((c & 3) << 4); } if (b64pad) while((ret.length & 3) > 0) ret += b64pad; return ret; } // convert a base64 string to hex function b64tohex(s) { var ret = "" var i; var k = 0; // b64 state, 0-3 var slop; var v; for(i = 0; i < s.length; ++i) { if(s.charAt(i) == b64pad) break; v = b64map.indexOf(s.charAt(i)); if(v < 0) continue; if(k == 0) { ret += int2char(v >> 2); slop = v & 3; k = 1; } else if(k == 1) { ret += int2char((slop << 2) | (v >> 4)); slop = v & 0xf; k = 2; } else if(k == 2) { ret += int2char(slop); ret += int2char(v >> 2); slop = v & 3; k = 3; } else { ret += int2char((slop << 2) | (v >> 4)); ret += int2char(v & 0xf); k = 0; } } if(k == 1) ret += int2char(slop << 2); return ret; } // convert a base64 string to a byte/number array function b64toBA(s) { //piggyback on b64tohex for now, optimize later var h = b64tohex(s); var i; var a = new Array(); for(i = 0; 2*i < h.length; ++i) { a[i] = parseInt(h.substring(2*i,2*i+2),16); } return a; } /* * A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined * in FIPS 180-1 * Version 2.2 Copyright Paul Johnston 2000 - 2009. * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet * Distributed under the BSD License * See http://pajhome.org.uk/crypt/md5 for details. */ /* * Configurable variables. You may need to tweak these to be compatible with * the server-side, but the defaults work in most cases. */ var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */ var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */ /* * These are the functions you'll usually want to call * They take string arguments and return either hex or base-64 encoded strings */ function hex_sha1(s) { return rstr2hex(rstr_sha1(str2rstr_utf8(s))); } function b64_sha1(s) { return rstr2b64(rstr_sha1(str2rstr_utf8(s))); } function any_sha1(s, e) { return rstr2any(rstr_sha1(str2rstr_utf8(s)), e); } function hex_hmac_sha1(k, d) { return rstr2hex(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); } function b64_hmac_sha1(k, d) { return rstr2b64(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); } function any_hmac_sha1(k, d, e) { return rstr2any(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d)), e); } /* * Perform a simple self-test to see if the VM is working */ function sha1_vm_test() { return hex_sha1("abc").toLowerCase() == "a9993e364706816aba3e25717850c26c9cd0d89d"; } /* * Calculate the SHA1 of a raw string */ function rstr_sha1(s) { return binb2rstr(binb_sha1(rstr2binb(s), s.length * 8)); } /* * Calculate the HMAC-SHA1 of a key and some data (raw strings) */ function rstr_hmac_sha1(key, data) { var bkey = rstr2binb(key); if(bkey.length > 16) bkey = binb_sha1(bkey, key.length * 8); var ipad = Array(16), opad = Array(16); for(var i = 0; i < 16; i++) { ipad[i] = bkey[i] ^ 0x36363636; opad[i] = bkey[i] ^ 0x5C5C5C5C; } var hash = binb_sha1(ipad.concat(rstr2binb(data)), 512 + data.length * 8); return binb2rstr(binb_sha1(opad.concat(hash), 512 + 160)); } /* * Convert a raw string to a hex string */ function rstr2hex(input) { try { hexcase } catch(e) { hexcase=0; } var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef"; var output = ""; var x; for(var i = 0; i < input.length; i++) { x = input.charCodeAt(i); output += hex_tab.charAt((x >>> 4) & 0x0F) + hex_tab.charAt( x & 0x0F); } return output; } /* * Convert a raw string to a base-64 string */ function rstr2b64(input) { try { b64pad } catch(e) { b64pad=''; } var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; var output = ""; var len = input.length; for(var i = 0; i < len; i += 3) { var triplet = (input.charCodeAt(i) << 16) | (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0) | (i + 2 < len ? input.charCodeAt(i+2) : 0); for(var j = 0; j < 4; j++) { if(i * 8 + j * 6 > input.length * 8) output += b64pad; else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F); } } return output; } /* * Convert a raw string to an arbitrary string encoding */ function rstr2any(input, encoding) { var divisor = encoding.length; var remainders = Array(); var i, q, x, quotient; /* Convert to an array of 16-bit big-endian values, forming the dividend */ var dividend = Array(Math.ceil(input.length / 2)); for(i = 0; i < dividend.length; i++) { dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1); } /* * Repeatedly perform a long division. The binary array forms the dividend, * the length of the encoding is the divisor. Once computed, the quotient * forms the dividend for the next step. We stop when the dividend is zero. * All remainders are stored for later use. */ while(dividend.length > 0) { quotient = Array(); x = 0; for(i = 0; i < dividend.length; i++) { x = (x << 16) + dividend[i]; q = Math.floor(x / divisor); x -= q * divisor; if(quotient.length > 0 || q > 0) quotient[quotient.length] = q; } remainders[remainders.length] = x; dividend = quotient; } /* Convert the remainders to the output string */ var output = ""; for(i = remainders.length - 1; i >= 0; i--) output += encoding.charAt(remainders[i]); /* Append leading zero equivalents */ var full_length = Math.ceil(input.length * 8 / (Math.log(encoding.length) / Math.log(2))) for(i = output.length; i < full_length; i++) output = encoding[0] + output; return output; } /* * Encode a string as utf-8. * For efficiency, this assumes the input is valid utf-16. */ function str2rstr_utf8(input) { var output = ""; var i = -1; var x, y; while(++i < input.length) { /* Decode utf-16 surrogate pairs */ x = input.charCodeAt(i); y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0; if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF) { x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF); i++; } /* Encode output as utf-8 */ if(x <= 0x7F) output += String.fromCharCode(x); else if(x <= 0x7FF) output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F), 0x80 | ( x & 0x3F)); else if(x <= 0xFFFF) output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F), 0x80 | ((x >>> 6 ) & 0x3F), 0x80 | ( x & 0x3F)); else if(x <= 0x1FFFFF) output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07), 0x80 | ((x >>> 12) & 0x3F), 0x80 | ((x >>> 6 ) & 0x3F), 0x80 | ( x & 0x3F)); } return output; } /* * Encode a string as utf-16 */ function str2rstr_utf16le(input) { var output = ""; for(var i = 0; i < input.length; i++) output += String.fromCharCode( input.charCodeAt(i) & 0xFF, (input.charCodeAt(i) >>> 8) & 0xFF); return output; } function str2rstr_utf16be(input) { var output = ""; for(var i = 0; i < input.length; i++) output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF, input.charCodeAt(i) & 0xFF); return output; } /* * Convert a raw string to an array of big-endian words * Characters >255 have their high-byte silently ignored. */ function rstr2binb(input) { var output = Array(input.length >> 2); for(var i = 0; i < output.length; i++) output[i] = 0; for(var i = 0; i < input.length * 8; i += 8) output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32); return output; } /* * Convert an array of big-endian words to a string */ function binb2rstr(input) { var output = ""; for(var i = 0; i < input.length * 32; i += 8) output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF); return output; } /* * Calculate the SHA-1 of an array of big-endian words, and a bit length */ function binb_sha1(x, len) { /* append padding */ x[len >> 5] |= 0x80 << (24 - len % 32); x[((len + 64 >> 9) << 4) + 15] = len; var w = Array(80); var a = 1732584193; var b = -271733879; var c = -1732584194; var d = 271733878; var e = -1009589776; for(var i = 0; i < x.length; i += 16) { var olda = a; var oldb = b; var oldc = c; var oldd = d; var olde = e; for(var j = 0; j < 80; j++) { if(j < 16) w[j] = x[i + j]; else w[j] = bit_rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1); var t = safe_add(safe_add(bit_rol(a, 5), sha1_ft(j, b, c, d)), safe_add(safe_add(e, w[j]), sha1_kt(j))); e = d; d = c; c = bit_rol(b, 30); b = a; a = t; } a = safe_add(a, olda); b = safe_add(b, oldb); c = safe_add(c, oldc); d = safe_add(d, oldd); e = safe_add(e, olde); } return Array(a, b, c, d, e); } /* * Perform the appropriate triplet combination function for the current * iteration */ function sha1_ft(t, b, c, d) { if(t < 20) return (b & c) | ((~b) & d); if(t < 40) return b ^ c ^ d; if(t < 60) return (b & c) | (b & d) | (c & d); return b ^ c ^ d; } /* * Determine the appropriate additive constant for the current iteration */ function sha1_kt(t) { return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 : (t < 60) ? -1894007588 : -899497514; } /* * Add integers, wrapping at 2^32. This uses 16-bit operations internally * to work around bugs in some JS interpreters. */ function safe_add(x, y) { var lsw = (x & 0xFFFF) + (y & 0xFFFF); var msw = (x >> 16) + (y >> 16) + (lsw >> 16); return (msw << 16) | (lsw & 0xFFFF); } /* * Bitwise rotate a 32-bit number to the left. */ function bit_rol(num, cnt) { return (num << cnt) | (num >>> (32 - cnt)); } /* * A JavaScript implementation of the Secure Hash Algorithm, SHA-256, as defined * in FIPS 180-2 * Version 2.2 Copyright Angel Marin, Paul Johnston 2000 - 2009. * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet * Distributed under the BSD License * See http://pajhome.org.uk/crypt/md5 for details. * Also http://anmar.eu.org/projects/jssha2/ */ /* * Configurable variables. You may need to tweak these to be compatible with * the server-side, but the defaults work in most cases. */ var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */ var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */ /* * These are the functions you'll usually want to call * They take string arguments and return either hex or base-64 encoded strings */ function hex_sha256(s) { return rstr2hex(rstr_sha256(str2rstr_utf8(s))); } function b64_sha256(s) { return rstr2b64(rstr_sha256(str2rstr_utf8(s))); } function any_sha256(s, e) { return rstr2any(rstr_sha256(str2rstr_utf8(s)), e); } function hex_hmac_sha256(k, d) { return rstr2hex(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); } function b64_hmac_sha256(k, d) { return rstr2b64(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); } function any_hmac_sha256(k, d, e) { return rstr2any(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d)), e); } /* * Perform a simple self-test to see if the VM is working */ function sha256_vm_test() { return hex_sha256("abc").toLowerCase() == "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad"; } /* * Calculate the sha256 of a raw string */ function rstr_sha256(s) { return binb2rstr(binb_sha256(rstr2binb(s), s.length * 8)); } /* * Calculate the HMAC-sha256 of a key and some data (raw strings) */ function rstr_hmac_sha256(key, data) { var bkey = rstr2binb(key); if(bkey.length > 16) bkey = binb_sha256(bkey, key.length * 8); var ipad = Array(16), opad = Array(16); for(var i = 0; i < 16; i++) { ipad[i] = bkey[i] ^ 0x36363636; opad[i] = bkey[i] ^ 0x5C5C5C5C; } var hash = binb_sha256(ipad.concat(rstr2binb(data)), 512 + data.length * 8); return binb2rstr(binb_sha256(opad.concat(hash), 512 + 256)); } /* * Convert a raw string to a hex string */ function rstr2hex(input) { try { hexcase } catch(e) { hexcase=0; } var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef"; var output = ""; var x; for(var i = 0; i < input.length; i++) { x = input.charCodeAt(i); output += hex_tab.charAt((x >>> 4) & 0x0F) + hex_tab.charAt( x & 0x0F); } return output; } /* * Convert a raw string to a base-64 string */ function rstr2b64(input) { try { b64pad } catch(e) { b64pad=''; } var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; var output = ""; var len = input.length; for(var i = 0; i < len; i += 3) { var triplet = (input.charCodeAt(i) << 16) | (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0) | (i + 2 < len ? input.charCodeAt(i+2) : 0); for(var j = 0; j < 4; j++) { if(i * 8 + j * 6 > input.length * 8) output += b64pad; else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F); } } return output; } /* * Convert a raw string to an arbitrary string encoding */ function rstr2any(input, encoding) { var divisor = encoding.length; var remainders = Array(); var i, q, x, quotient; /* Convert to an array of 16-bit big-endian values, forming the dividend */ var dividend = Array(Math.ceil(input.length / 2)); for(i = 0; i < dividend.length; i++) { dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1); } /* * Repeatedly perform a long division. The binary array forms the dividend, * the length of the encoding is the divisor. Once computed, the quotient * forms the dividend for the next step. We stop when the dividend is zero. * All remainders are stored for later use. */ while(dividend.length > 0) { quotient = Array(); x = 0; for(i = 0; i < dividend.length; i++) { x = (x << 16) + dividend[i]; q = Math.floor(x / divisor); x -= q * divisor; if(quotient.length > 0 || q > 0) quotient[quotient.length] = q; } remainders[remainders.length] = x; dividend = quotient; } /* Convert the remainders to the output string */ var output = ""; for(i = remainders.length - 1; i >= 0; i--) output += encoding.charAt(remainders[i]); /* Append leading zero equivalents */ var full_length = Math.ceil(input.length * 8 / (Math.log(encoding.length) / Math.log(2))) for(i = output.length; i < full_length; i++) output = encoding[0] + output; return output; } /* * Encode a string as utf-8. * For efficiency, this assumes the input is valid utf-16. */ function str2rstr_utf8(input) { var output = ""; var i = -1; var x, y; while(++i < input.length) { /* Decode utf-16 surrogate pairs */ x = input.charCodeAt(i); y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0; if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF) { x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF); i++; } /* Encode output as utf-8 */ if(x <= 0x7F) output += String.fromCharCode(x); else if(x <= 0x7FF) output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F), 0x80 | ( x & 0x3F)); else if(x <= 0xFFFF) output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F), 0x80 | ((x >>> 6 ) & 0x3F), 0x80 | ( x & 0x3F)); else if(x <= 0x1FFFFF) output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07), 0x80 | ((x >>> 12) & 0x3F), 0x80 | ((x >>> 6 ) & 0x3F), 0x80 | ( x & 0x3F)); } return output; } /* * Encode a string as utf-16 */ function str2rstr_utf16le(input) { var output = ""; for(var i = 0; i < input.length; i++) output += String.fromCharCode( input.charCodeAt(i) & 0xFF, (input.charCodeAt(i) >>> 8) & 0xFF); return output; } function str2rstr_utf16be(input) { var output = ""; for(var i = 0; i < input.length; i++) output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF, input.charCodeAt(i) & 0xFF); return output; } /* * Convert a raw string to an array of big-endian words * Characters >255 have their high-byte silently ignored. */ function rstr2binb(input) { var output = Array(input.length >> 2); for(var i = 0; i < output.length; i++) output[i] = 0; for(var i = 0; i < input.length * 8; i += 8) output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32); return output; } /* * Convert an array of big-endian words to a string */ function binb2rstr(input) { var output = ""; for(var i = 0; i < input.length * 32; i += 8) output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF); return output; } /* * Main sha256 function, with its support functions */ function sha256_S (X, n) {return ( X >>> n ) | (X << (32 - n));} function sha256_R (X, n) {return ( X >>> n );} function sha256_Ch(x, y, z) {return ((x & y) ^ ((~x) & z));} function sha256_Maj(x, y, z) {return ((x & y) ^ (x & z) ^ (y & z));} function sha256_Sigma0256(x) {return (sha256_S(x, 2) ^ sha256_S(x, 13) ^ sha256_S(x, 22));} function sha256_Sigma1256(x) {return (sha256_S(x, 6) ^ sha256_S(x, 11) ^ sha256_S(x, 25));} function sha256_Gamma0256(x) {return (sha256_S(x, 7) ^ sha256_S(x, 18) ^ sha256_R(x, 3));} function sha256_Gamma1256(x) {return (sha256_S(x, 17) ^ sha256_S(x, 19) ^ sha256_R(x, 10));} function sha256_Sigma0512(x) {return (sha256_S(x, 28) ^ sha256_S(x, 34) ^ sha256_S(x, 39));} function sha256_Sigma1512(x) {return (sha256_S(x, 14) ^ sha256_S(x, 18) ^ sha256_S(x, 41));} function sha256_Gamma0512(x) {return (sha256_S(x, 1) ^ sha256_S(x, 8) ^ sha256_R(x, 7));} function sha256_Gamma1512(x) {return (sha256_S(x, 19) ^ sha256_S(x, 61) ^ sha256_R(x, 6));} var sha256_K = new Array ( 1116352408, 1899447441, -1245643825, -373957723, 961987163, 1508970993, -1841331548, -1424204075, -670586216, 310598401, 607225278, 1426881987, 1925078388, -2132889090, -1680079193, -1046744716, -459576895, -272742522, 264347078, 604807628, 770255983, 1249150122, 1555081692, 1996064986, -1740746414, -1473132947, -1341970488, -1084653625, -958395405, -710438585, 113926993, 338241895, 666307205, 773529912, 1294757372, 1396182291, 1695183700, 1986661051, -2117940946, -1838011259, -1564481375, -1474664885, -1035236496, -949202525, -778901479, -694614492, -200395387, 275423344, 430227734, 506948616, 659060556, 883997877, 958139571, 1322822218, 1537002063, 1747873779, 1955562222, 2024104815, -2067236844, -1933114872, -1866530822, -1538233109, -1090935817, -965641998 ); function binb_sha256(m, l) { var HASH = new Array(1779033703, -1150833019, 1013904242, -1521486534, 1359893119, -1694144372, 528734635, 1541459225); var W = new Array(64); var a, b, c, d, e, f, g, h; var i, j, T1, T2; /* append padding */ m[l >> 5] |= 0x80 << (24 - l % 32); m[((l + 64 >> 9) << 4) + 15] = l; for(i = 0; i < m.length; i += 16) { a = HASH[0]; b = HASH[1]; c = HASH[2]; d = HASH[3]; e = HASH[4]; f = HASH[5]; g = HASH[6]; h = HASH[7]; for(j = 0; j < 64; j++) { if (j < 16) W[j] = m[j + i]; else W[j] = safe_add(safe_add(safe_add(sha256_Gamma1256(W[j - 2]), W[j - 7]), sha256_Gamma0256(W[j - 15])), W[j - 16]); T1 = safe_add(safe_add(safe_add(safe_add(h, sha256_Sigma1256(e)), sha256_Ch(e, f, g)), sha256_K[j]), W[j]); T2 = safe_add(sha256_Sigma0256(a), sha256_Maj(a, b, c)); h = g; g = f; f = e; e = safe_add(d, T1); d = c; c = b; b = a; a = safe_add(T1, T2); } HASH[0] = safe_add(a, HASH[0]); HASH[1] = safe_add(b, HASH[1]); HASH[2] = safe_add(c, HASH[2]); HASH[3] = safe_add(d, HASH[3]); HASH[4] = safe_add(e, HASH[4]); HASH[5] = safe_add(f, HASH[5]); HASH[6] = safe_add(g, HASH[6]); HASH[7] = safe_add(h, HASH[7]); } return HASH; } function safe_add (x, y) { var lsw = (x & 0xFFFF) + (y & 0xFFFF); var msw = (x >> 16) + (y >> 16) + (lsw >> 16); return (msw << 16) | (lsw & 0xFFFF); } /*! (c) Tom Wu | http://www-cs-students.stanford.edu/~tjw/jsbn/ */ // Depends on jsbn.js and rng.js // Version 1.1: support utf-8 encoding in pkcs1pad2 // convert a (hex) string to a bignum object function parseBigInt(str,r) { return new BigInteger(str,r); } function linebrk(s,n) { var ret = ""; var i = 0; while(i + n < s.length) { ret += s.substring(i,i+n) + "\n"; i += n; } return ret + s.substring(i,s.length); } function byte2Hex(b) { if(b < 0x10) return "0" + b.toString(16); else return b.toString(16); } // PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint function pkcs1pad2(s,n) { if(n < s.length + 11) { // TODO: fix for utf-8 alert("Message too long for RSA"); return null; } var ba = new Array(); var i = s.length - 1; while(i >= 0 && n > 0) { var c = s.charCodeAt(i--); if(c < 128) { // encode using utf-8 ba[--n] = c; } else if((c > 127) && (c < 2048)) { ba[--n] = (c & 63) | 128; ba[--n] = (c >> 6) | 192; } else { ba[--n] = (c & 63) | 128; ba[--n] = ((c >> 6) & 63) | 128; ba[--n] = (c >> 12) | 224; } } ba[--n] = 0; var rng = new SecureRandom(); var x = new Array(); while(n > 2) { // random non-zero pad x[0] = 0; while(x[0] == 0) rng.nextBytes(x); ba[--n] = x[0]; } ba[--n] = 2; ba[--n] = 0; return new BigInteger(ba); } // PKCS#1 (OAEP) mask generation function function oaep_mgf1_arr(seed, len, hash) { var mask = '', i = 0; while (mask.length < len) { mask += hash(String.fromCharCode.apply(String, seed.concat([ (i & 0xff000000) >> 24, (i & 0x00ff0000) >> 16, (i & 0x0000ff00) >> 8, i & 0x000000ff]))); i += 1; } return mask; } // PKCS#1 (OAEP) pad input string s to n bytes, and return a bigint function oaep_pad(s, n, hash, hashLen) { if (!hash) { hash = rstr_sha1; hashLen = 20; } if (s.length + 2 * hashLen + 2 > n) { throw "Message too long for RSA"; } var PS = '', i; for (i = 0; i < n - s.length - 2 * hashLen - 2; i += 1) { PS += '\x00'; } var DB = hash('') + PS + '\x01' + s; var seed = new Array(hashLen); new SecureRandom().nextBytes(seed); var dbMask = oaep_mgf1_arr(seed, DB.length, hash); var maskedDB = []; for (i = 0; i < DB.length; i += 1) { maskedDB[i] = DB.charCodeAt(i) ^ dbMask.charCodeAt(i); } var seedMask = oaep_mgf1_arr(maskedDB, seed.length, hash); var maskedSeed = [0]; for (i = 0; i < seed.length; i += 1) { maskedSeed[i + 1] = seed[i] ^ seedMask.charCodeAt(i); } return new BigInteger(maskedSeed.concat(maskedDB)); } // "empty" RSA key constructor function RSAKey() { this.n = null; this.e = 0; this.d = null; this.p = null; this.q = null; this.dmp1 = null; this.dmq1 = null; this.coeff = null; } // Set the public key fields N and e from hex strings function RSASetPublic(N,E) { this.isPublic = true; if (typeof N !== "string") { this.n = N; this.e = E; } else if(N != null && E != null && N.length > 0 && E.length > 0) { this.n = parseBigInt(N,16); this.e = parseInt(E,16); } else alert("Invalid RSA public key"); } // Perform raw public operation on "x": return x^e (mod n) function RSADoPublic(x) { return x.modPowInt(this.e, this.n); } // Return the PKCS#1 RSA encryption of "text" as an even-length hex string function RSAEncrypt(text) { var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3); if(m == null) return null; var c = this.doPublic(m); if(c == null) return null; var h = c.toString(16); if((h.length & 1) == 0) return h; else return "0" + h; } // Return the PKCS#1 OAEP RSA encryption of "text" as an even-length hex string function RSAEncryptOAEP(text, hash, hashLen) { var m = oaep_pad(text, (this.n.bitLength()+7)>>3, hash, hashLen); if(m == null) return null; var c = this.doPublic(m); if(c == null) return null; var h = c.toString(16); if((h.length & 1) == 0) return h; else return "0" + h; } // Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string //function RSAEncryptB64(text) { // var h = this.encrypt(text); // if(h) return hex2b64(h); else return null; //} // protected RSAKey.prototype.doPublic = RSADoPublic; // public RSAKey.prototype.setPublic = RSASetPublic; RSAKey.prototype.encrypt = RSAEncrypt; RSAKey.prototype.encryptOAEP = RSAEncryptOAEP; //RSAKey.prototype.encrypt_b64 = RSAEncryptB64; RSAKey.prototype.type = "RSA"; /*! (c) Tom Wu | http://www-cs-students.stanford.edu/~tjw/jsbn/ */ // Depends on rsa.js and jsbn2.js // Version 1.1: support utf-8 decoding in pkcs1unpad2 // Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext function pkcs1unpad2(d,n) { var b = d.toByteArray(); var i = 0; while(i < b.length && b[i] == 0) ++i; if(b.length-i != n-1 || b[i] != 2) return null; ++i; while(b[i] != 0) if(++i >= b.length) return null; var ret = ""; while(++i < b.length) { var c = b[i] & 255; if(c < 128) { // utf-8 decode ret += String.fromCharCode(c); } else if((c > 191) && (c < 224)) { ret += String.fromCharCode(((c & 31) << 6) | (b[i+1] & 63)); ++i; } else { ret += String.fromCharCode(((c & 15) << 12) | ((b[i+1] & 63) << 6) | (b[i+2] & 63)); i += 2; } } return ret; } // PKCS#1 (OAEP) mask generation function function oaep_mgf1_str(seed, len, hash) { var mask = '', i = 0; while (mask.length < len) { mask += hash(seed + String.fromCharCode.apply(String, [ (i & 0xff000000) >> 24, (i & 0x00ff0000) >> 16, (i & 0x0000ff00) >> 8, i & 0x000000ff])); i += 1; } return mask; } // Undo PKCS#1 (OAEP) padding and, if valid, return the plaintext function oaep_unpad(d, n, hash, hashLen) { if (!hash) { hash = rstr_sha1; hashLen = 20; } d = d.toByteArray(); var i; for (i = 0; i < d.length; i += 1) { d[i] &= 0xff; } while (d.length < n) { d.unshift(0); } d = String.fromCharCode.apply(String, d); if (d.length < 2 * hashLen + 2) { throw "Cipher too short"; } var maskedSeed = d.substr(1, hashLen) var maskedDB = d.substr(hashLen + 1); var seedMask = oaep_mgf1_str(maskedDB, hashLen, hash); var seed = [], i; for (i = 0; i < maskedSeed.length; i += 1) { seed[i] = maskedSeed.charCodeAt(i) ^ seedMask.charCodeAt(i); } var dbMask = oaep_mgf1_str(String.fromCharCode.apply(String, seed), d.length - hashLen, hash); var DB = []; for (i = 0; i < maskedDB.length; i += 1) { DB[i] = maskedDB.charCodeAt(i) ^ dbMask.charCodeAt(i); } DB = String.fromCharCode.apply(String, DB); if (DB.substr(0, hashLen) !== hash('')) { throw "Hash mismatch"; } DB = DB.substr(hashLen); var first_one = DB.indexOf('\x01'); var last_zero = (first_one != -1) ? DB.substr(0, first_one).lastIndexOf('\x00') : -1; if (last_zero + 1 != first_one) { throw "Malformed data"; } return DB.substr(first_one + 1); } // Set the private key fields N, e, and d from hex strings function RSASetPrivate(N,E,D) { this.isPrivate = true; if (typeof N !== "string") { this.n = N; this.e = E; this.d = D; } else if(N != null && E != null && N.length > 0 && E.length > 0) { this.n = parseBigInt(N,16); this.e = parseInt(E,16); this.d = parseBigInt(D,16); } else alert("Invalid RSA private key"); } // Set the private key fields N, e, d and CRT params from hex strings function RSASetPrivateEx(N,E,D,P,Q,DP,DQ,C) { this.isPrivate = true; if (N == null) throw "RSASetPrivateEx N == null"; if (E == null) throw "RSASetPrivateEx E == null"; if (N.length == 0) throw "RSASetPrivateEx N.length == 0"; if (E.length == 0) throw "RSASetPrivateEx E.length == 0"; if (N != null && E != null && N.length > 0 && E.length > 0) { this.n = parseBigInt(N,16); this.e = parseInt(E,16); this.d = parseBigInt(D,16); this.p = parseBigInt(P,16); this.q = parseBigInt(Q,16); this.dmp1 = parseBigInt(DP,16); this.dmq1 = parseBigInt(DQ,16); this.coeff = parseBigInt(C,16); } else { alert("Invalid RSA private key in RSASetPrivateEx"); } } // Generate a new random private key B bits long, using public expt E function RSAGenerate(B,E) { var rng = new SecureRandom(); var qs = B>>1; this.e = parseInt(E,16); var ee = new BigInteger(E,16); for(;;) { for(;;) { this.p = new BigInteger(B-qs,1,rng); if(this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrime(10)) break; } for(;;) { this.q = new BigInteger(qs,1,rng); if(this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrime(10)) break; } if(this.p.compareTo(this.q) <= 0) { var t = this.p; this.p = this.q; this.q = t; } var p1 = this.p.subtract(BigInteger.ONE); // p1 = p - 1 var q1 = this.q.subtract(BigInteger.ONE); // q1 = q - 1 var phi = p1.multiply(q1); if(phi.gcd(ee).compareTo(BigInteger.ONE) == 0) { this.n = this.p.multiply(this.q); // this.n = p * q this.d = ee.modInverse(phi); // this.d = this.dmp1 = this.d.mod(p1); // this.dmp1 = d mod (p - 1) this.dmq1 = this.d.mod(q1); // this.dmq1 = d mod (q - 1) this.coeff = this.q.modInverse(this.p); // this.coeff = (q ^ -1) mod p break; } } } // Perform raw private operation on "x": return x^d (mod n) function RSADoPrivate(x) { if(this.p == null || this.q == null) return x.modPow(this.d, this.n); // TODO: re-calculate any missing CRT params var xp = x.mod(this.p).modPow(this.dmp1, this.p); // xp=cp? var xq = x.mod(this.q).modPow(this.dmq1, this.q); // xq=cq? while(xp.compareTo(xq) < 0) xp = xp.add(this.p); // NOTE: // xp.subtract(xq) => cp -cq // xp.subtract(xq).multiply(this.coeff).mod(this.p) => (cp - cq) * u mod p = h // xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq) => cq + (h * q) = M return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq); } // Return the PKCS#1 RSA decryption of "ctext". // "ctext" is an even-length hex string and the output is a plain string. function RSADecrypt(ctext) { var c = parseBigInt(ctext, 16); var m = this.doPrivate(c); if(m == null) return null; return pkcs1unpad2(m, (this.n.bitLength()+7)>>3); } // Return the PKCS#1 OAEP RSA decryption of "ctext". // "ctext" is an even-length hex string and the output is a plain string. function RSADecryptOAEP(ctext, hash, hashLen) { var c = parseBigInt(ctext, 16); var m = this.doPrivate(c); if(m == null) return null; return oaep_unpad(m, (this.n.bitLength()+7)>>3, hash, hashLen); } // Return the PKCS#1 RSA decryption of "ctext". // "ctext" is a Base64-encoded string and the output is a plain string. //function RSAB64Decrypt(ctext) { // var h = b64tohex(ctext); // if(h) return this.decrypt(h); else return null; //} // protected RSAKey.prototype.doPrivate = RSADoPrivate; // public RSAKey.prototype.setPrivate = RSASetPrivate; RSAKey.prototype.setPrivateEx = RSASetPrivateEx; RSAKey.prototype.generate = RSAGenerate; RSAKey.prototype.decrypt = RSADecrypt; RSAKey.prototype.decryptOAEP = RSADecryptOAEP; //RSAKey.prototype.b64_decrypt = RSAB64Decrypt; /*! asn1hex-1.1.4.js (c) 2012-2013 Kenji Urushima | kjur.github.com/jsrsasign/license */ /* * asn1hex.js - Hexadecimal represented ASN.1 string library * * Copyright (c) 2010-2013 Kenji Urushima (kenji.urushima@gmail.com) * * This software is licensed under the terms of the MIT License. * http://kjur.github.com/jsrsasign/license/ * * The above copyright and license notice shall be * included in all copies or substantial portions of the Software. */ /** * @fileOverview * @name asn1hex-1.1.js * @author Kenji Urushima kenji.urushima@gmail.com * @version asn1hex 1.1.4 (2013-Oct-02) * @license MIT License */ /* * MEMO: * f('3082025b02...', 2) ... 82025b ... 3bytes * f('020100', 2) ... 01 ... 1byte * f('0203001...', 2) ... 03 ... 1byte * f('02818003...', 2) ... 8180 ... 2bytes * f('3080....0000', 2) ... 80 ... -1 * * Requirements: * - ASN.1 type octet length MUST be 1. * (i.e. ASN.1 primitives like SET, SEQUENCE, INTEGER, OCTETSTRING ...) */ /** * ASN.1 DER encoded hexadecimal string utility class * @name ASN1HEX * @class ASN.1 DER encoded hexadecimal string utility class * @since jsrsasign 1.1 */ var ASN1HEX = new function() { /** * get byte length for ASN.1 L(length) bytes * @name getByteLengthOfL_AtObj * @memberOf ASN1HEX * @function * @param {String} s hexadecimal string of ASN.1 DER encoded data * @param {Number} pos string index * @return byte length for ASN.1 L(length) bytes */ this.getByteLengthOfL_AtObj = function(s, pos) { if (s.substring(pos + 2, pos + 3) != '8') return 1; var i = parseInt(s.substring(pos + 3, pos + 4)); if (i == 0) return -1; // length octet '80' indefinite length if (0 < i && i < 10) return i + 1; // including '8?' octet; return -2; // malformed format }; /** * get hexadecimal string for ASN.1 L(length) bytes * @name getHexOfL_AtObj * @memberOf ASN1HEX * @function * @param {String} s hexadecimal string of ASN.1 DER encoded data * @param {Number} pos string index * @return {String} hexadecimal string for ASN.1 L(length) bytes */ this.getHexOfL_AtObj = function(s, pos) { var len = this.getByteLengthOfL_AtObj(s, pos); if (len < 1) return ''; return s.substring(pos + 2, pos + 2 + len * 2); }; // getting ASN.1 length value at the position 'idx' of // hexa decimal string 's'. // // f('3082025b02...', 0) ... 82025b ... ??? // f('020100', 0) ... 01 ... 1 // f('0203001...', 0) ... 03 ... 3 // f('02818003...', 0) ... 8180 ... 128 /** * get integer value of ASN.1 length for ASN.1 data * @name getIntOfL_AtObj * @memberOf ASN1HEX * @function * @param {String} s hexadecimal string of ASN.1 DER encoded data * @param {Number} pos string index * @return ASN.1 L(length) integer value */ this.getIntOfL_AtObj = function(s, pos) { var hLength = this.getHexOfL_AtObj(s, pos); if (hLength == '') return -1; var bi; if (parseInt(hLength.substring(0, 1)) < 8) { bi = new BigInteger(hLength, 16); } else { bi = new BigInteger(hLength.substring(2), 16); } return bi.intValue(); }; /** * get ASN.1 value starting string position for ASN.1 object refered by index 'idx'. * @name getStartPosOfV_AtObj * @memberOf ASN1HEX * @function * @param {String} s hexadecimal string of ASN.1 DER encoded data * @param {Number} pos string index */ this.getStartPosOfV_AtObj = function(s, pos) { var l_len = this.getByteLengthOfL_AtObj(s, pos); if (l_len < 0) return l_len; return pos + (l_len + 1) * 2; }; /** * get hexadecimal string of ASN.1 V(value) * @name getHexOfV_AtObj * @memberOf ASN1HEX * @function * @param {String} s hexadecimal string of ASN.1 DER encoded data * @param {Number} pos string index * @return {String} hexadecimal string of ASN.1 value. */ this.getHexOfV_AtObj = function(s, pos) { var pos1 = this.getStartPosOfV_AtObj(s, pos); var len = this.getIntOfL_AtObj(s, pos); return s.substring(pos1, pos1 + len * 2); }; /** * get hexadecimal string of ASN.1 TLV at * @name getHexOfTLV_AtObj * @memberOf ASN1HEX * @function * @param {String} s hexadecimal string of ASN.1 DER encoded data * @param {Number} pos string index * @return {String} hexadecimal string of ASN.1 TLV. * @since 1.1 */ this.getHexOfTLV_AtObj = function(s, pos) { var hT = s.substr(pos, 2); var hL = this.getHexOfL_AtObj(s, pos); var hV = this.getHexOfV_AtObj(s, pos); return hT + hL + hV; }; /** * get next sibling starting index for ASN.1 object string * @name getPosOfNextSibling_AtObj * @memberOf ASN1HEX * @function * @param {String} s hexadecimal string of ASN.1 DER encoded data * @param {Number} pos string index * @return next sibling starting index for ASN.1 object string */ this.getPosOfNextSibling_AtObj = function(s, pos) { var pos1 = this.getStartPosOfV_AtObj(s, pos); var len = this.getIntOfL_AtObj(s, pos); return pos1 + len * 2; }; /** * get array of indexes of child ASN.1 objects * @name getPosArrayOfChildren_AtObj * @memberOf ASN1HEX * @function * @param {String} s hexadecimal string of ASN.1 DER encoded data * @param {Number} start string index of ASN.1 object * @return {Array of Number} array of indexes for childen of ASN.1 objects */ this.getPosArrayOfChildren_AtObj = function(h, pos) { var a = new Array(); var p0 = this.getStartPosOfV_AtObj(h, pos); a.push(p0); var len = this.getIntOfL_AtObj(h, pos); var p = p0; var k = 0; while (1) { var pNext = this.getPosOfNextSibling_AtObj(h, p); if (pNext == null || (pNext - p0 >= (len * 2))) break; if (k >= 200) break; a.push(pNext); p = pNext; k++; } return a; }; /** * get string index of nth child object of ASN.1 object refered by h, idx * @name getNthChildIndex_AtObj * @memberOf ASN1HEX * @function * @param {String} h hexadecimal string of ASN.1 DER encoded data * @param {Number} idx start string index of ASN.1 object * @param {Number} nth for child * @return {Number} string index of nth child. * @since 1.1 */ this.getNthChildIndex_AtObj = function(h, idx, nth) { var a = this.getPosArrayOfChildren_AtObj(h, idx); return a[nth]; }; // ========== decendant methods ============================== /** * get string index of nth child object of ASN.1 object refered by h, idx * @name getDecendantIndexByNthList * @memberOf ASN1HEX * @function * @param {String} h hexadecimal string of ASN.1 DER encoded data * @param {Number} currentIndex start string index of ASN.1 object * @param {Array of Number} nthList array list of nth * @return {Number} string index refered by nthList * @since 1.1 * @example * The "nthList" is a index list of structured ASN.1 object * reference. Here is a sample structure and "nthList"s which * refers each objects. * * SQUENCE - [0] * SEQUENCE - [0, 0] * IA5STRING 000 - [0, 0, 0] * UTF8STRING 001 - [0, 0, 1] * SET - [0, 1] * IA5STRING 010 - [0, 1, 0] * UTF8STRING 011 - [0, 1, 1] */ this.getDecendantIndexByNthList = function(h, currentIndex, nthList) { if (nthList.length == 0) { return currentIndex; } var firstNth = nthList.shift(); var a = this.getPosArrayOfChildren_AtObj(h, currentIndex); return this.getDecendantIndexByNthList(h, a[firstNth], nthList); }; /** * get hexadecimal string of ASN.1 TLV refered by current index and nth index list. * @name getDecendantHexTLVByNthList * @memberOf ASN1HEX * @function * @param {String} h hexadecimal string of ASN.1 DER encoded data * @param {Number} currentIndex start string index of ASN.1 object * @param {Array of Number} nthList array list of nth * @return {Number} hexadecimal string of ASN.1 TLV refered by nthList * @since 1.1 */ this.getDecendantHexTLVByNthList = function(h, currentIndex, nthList) { var idx = this.getDecendantIndexByNthList(h, currentIndex, nthList); return this.getHexOfTLV_AtObj(h, idx); }; /** * get hexadecimal string of ASN.1 V refered by current index and nth index list. * @name getDecendantHexVByNthList * @memberOf ASN1HEX * @function * @param {String} h hexadecimal string of ASN.1 DER encoded data * @param {Number} currentIndex start string index of ASN.1 object * @param {Array of Number} nthList array list of nth * @return {Number} hexadecimal string of ASN.1 V refered by nthList * @since 1.1 */ this.getDecendantHexVByNthList = function(h, currentIndex, nthList) { var idx = this.getDecendantIndexByNthList(h, currentIndex, nthList); return this.getHexOfV_AtObj(h, idx); }; }; /* * @since asn1hex 1.1.4 */ ASN1HEX.getVbyList = function(h, currentIndex, nthList, checkingTag) { var idx = this.getDecendantIndexByNthList(h, currentIndex, nthList); if (idx === undefined) { throw "can't find nthList object"; } if (checkingTag !== undefined) { if (h.substr(idx, 2) != checkingTag) { throw "checking tag doesn't match: " + h.substr(idx,2) + "!=" + checkingTag; } } return this.getHexOfV_AtObj(h, idx); }; /*! base64x-1.1.2 (c) 2013 Kenji Urushima | kjur.github.com/jsjws/license */ /* * base64x.js - Base64url and supplementary functions for Tom Wu's base64.js library * * version: 1.1.2 (2013 Jul 21) * * Copyright (c) 2012-2013 Kenji Urushima (kenji.urushima@gmail.com) * * This software is licensed under the terms of the MIT License. * http://kjur.github.com/jsjws/license/ * * The above copyright and license notice shall be * included in all copies or substantial portions of the Software. * * DEPENDS ON: * - base64.js - Tom Wu's Base64 library */ /** * Base64URL and supplementary functions for Tom Wu's base64.js library.
* This class is just provide information about global functions * defined in 'base64x.js'. The 'base64x.js' script file provides * global functions for converting following data each other. *
    *
  • (ASCII) String
  • *
  • UTF8 String including CJK, Latin and other characters
  • *
  • byte array
  • *
  • hexadecimal encoded String
  • *
  • Full URIComponent encoded String (such like "%69%94")
  • *
  • Base64 encoded String
  • *
  • Base64URL encoded String
  • *
* All functions in 'base64x.js' are defined in {@link _global_} and not * in this class. * * @class Base64URL and supplementary functions for Tom Wu's base64.js library * @author Kenji Urushima * @version 1.1 (07 May 2012) * @requires base64.js * @see 'jwjws'(JWS JavaScript Library) home page http://kjur.github.com/jsjws/ * @see 'jwrsasign'(RSA Sign JavaScript Library) home page http://kjur.github.com/jsrsasign/ */ function Base64x() { } // ==== string / byte array ================================ /** * convert a string to an array of character codes * @param {String} s * @return {Array of Numbers} */ function stoBA(s) { var a = new Array(); for (var i = 0; i < s.length; i++) { a[i] = s.charCodeAt(i); } return a; } /** * convert an array of character codes to a string * @param {Array of Numbers} a array of character codes * @return {String} s */ function BAtos(a) { var s = ""; for (var i = 0; i < a.length; i++) { s = s + String.fromCharCode(a[i]); } return s; } // ==== byte array / hex ================================ /** * convert an array of bytes(Number) to hexadecimal string.
* @param {Array of Numbers} a array of bytes * @return {String} hexadecimal string */ function BAtohex(a) { var s = ""; for (var i = 0; i < a.length; i++) { var hex1 = a[i].toString(16); if (hex1.length == 1) hex1 = "0" + hex1; s = s + hex1; } return s; } // ==== string / hex ================================ /** * convert a ASCII string to a hexadecimal string of ASCII codes.
* NOTE: This can't be used for non ASCII characters. * @param {s} s ASCII string * @return {String} hexadecimal string */ function stohex(s) { return BAtohex(stoBA(s)); } // ==== string / base64 ================================ /** * convert a ASCII string to a Base64 encoded string.
* NOTE: This can't be used for non ASCII characters. * @param {s} s ASCII string * @return {String} Base64 encoded string */ function stob64(s) { return hex2b64(stohex(s)); } // ==== string / base64url ================================ /** * convert a ASCII string to a Base64URL encoded string.
* NOTE: This can't be used for non ASCII characters. * @param {s} s ASCII string * @return {String} Base64URL encoded string */ function stob64u(s) { return b64tob64u(hex2b64(stohex(s))); } /** * convert a Base64URL encoded string to a ASCII string.
* NOTE: This can't be used for Base64URL encoded non ASCII characters. * @param {s} s Base64URL encoded string * @return {String} ASCII string */ function b64utos(s) { return BAtos(b64toBA(b64utob64(s))); } // ==== base64 / base64url ================================ /** * convert a Base64 encoded string to a Base64URL encoded string.
* Example: "ab+c3f/==" → "ab-c3f_" * @param {String} s Base64 encoded string * @return {String} Base64URL encoded string */ function b64tob64u(s) { s = s.replace(/\=/g, ""); s = s.replace(/\+/g, "-"); s = s.replace(/\//g, "_"); return s; } /** * convert a Base64URL encoded string to a Base64 encoded string.
* Example: "ab-c3f_" → "ab+c3f/==" * @param {String} s Base64URL encoded string * @return {String} Base64 encoded string */ function b64utob64(s) { if (s.length % 4 == 2) s = s + "=="; else if (s.length % 4 == 3) s = s + "="; s = s.replace(/-/g, "+"); s = s.replace(/_/g, "/"); return s; } // ==== hex / base64url ================================ /** * convert a hexadecimal string to a Base64URL encoded string.
* @param {String} s hexadecimal string * @return {String} Base64URL encoded string */ function hextob64u(s) { return b64tob64u(hex2b64(s)); } /** * convert a Base64URL encoded string to a hexadecimal string.
* @param {String} s Base64URL encoded string * @return {String} hexadecimal string */ function b64utohex(s) { return b64tohex(b64utob64(s)); } var utf8tob64u, b64utoutf8; if (typeof Buffer === 'function') { utf8tob64u = function (s) { return b64tob64u(new Buffer(s, 'utf8').toString('base64')); }; b64utoutf8 = function (s) { return new Buffer(b64utob64(s), 'base64').toString('utf8'); }; } else { // ==== utf8 / base64url ================================ /** * convert a UTF-8 encoded string including CJK or Latin to a Base64URL encoded string.
* @param {String} s UTF-8 encoded string * @return {String} Base64URL encoded string * @since 1.1 */ utf8tob64u = function (s) { return hextob64u(uricmptohex(encodeURIComponentAll(s))); }; /** * convert a Base64URL encoded string to a UTF-8 encoded string including CJK or Latin.
* @param {String} s Base64URL encoded string * @return {String} UTF-8 encoded string * @since 1.1 */ b64utoutf8 = function (s) { return decodeURIComponent(hextouricmp(b64utohex(s))); }; } // ==== utf8 / base64url ================================ /** * convert a UTF-8 encoded string including CJK or Latin to a Base64 encoded string.
* @param {String} s UTF-8 encoded string * @return {String} Base64 encoded string * @since 1.1.1 */ function utf8tob64(s) { return hex2b64(uricmptohex(encodeURIComponentAll(s))); } /** * convert a Base64 encoded string to a UTF-8 encoded string including CJK or Latin.
* @param {String} s Base64 encoded string * @return {String} UTF-8 encoded string * @since 1.1.1 */ function b64toutf8(s) { return decodeURIComponent(hextouricmp(b64tohex(s))); } // ==== utf8 / hex ================================ /** * convert a UTF-8 encoded string including CJK or Latin to a hexadecimal encoded string.
* @param {String} s UTF-8 encoded string * @return {String} hexadecimal encoded string * @since 1.1.1 */ function utf8tohex(s) { return uricmptohex(encodeURIComponentAll(s)); } /** * convert a hexadecimal encoded string to a UTF-8 encoded string including CJK or Latin.
* Note that when input is improper hexadecimal string as UTF-8 string, this function returns * 'null'. * @param {String} s hexadecimal encoded string * @return {String} UTF-8 encoded string or null * @since 1.1.1 */ function hextoutf8(s) { return decodeURIComponent(hextouricmp(s)); } /** * convert a hexadecimal encoded string to raw string including non printable characters.
* @param {String} s hexadecimal encoded string * @return {String} raw string * @since 1.1.2 * @example * hextorstr("610061") → "a\x00a" */ function hextorstr(sHex) { var s = ""; for (var i = 0; i < sHex.length - 1; i += 2) { s += String.fromCharCode(parseInt(sHex.substr(i, 2), 16)); } return s; } /** * convert a raw string including non printable characters to hexadecimal encoded string.
* @param {String} s raw string * @return {String} hexadecimal encoded string * @since 1.1.2 * @example * rstrtohex("a\x00a") → "610061" */ function rstrtohex(s) { var result = ""; for (var i = 0; i < s.length; i++) { result += ("0" + s.charCodeAt(i).toString(16)).slice(-2); } return result; } // ==== URIComponent / hex ================================ /** * convert a URLComponent string such like "%67%68" to a hexadecimal string.
* @param {String} s URIComponent string such like "%67%68" * @return {String} hexadecimal string * @since 1.1 */ function uricmptohex(s) { return s.replace(/%/g, ""); } /** * convert a hexadecimal string to a URLComponent string such like "%67%68".
* @param {String} s hexadecimal string * @return {String} URIComponent string such like "%67%68" * @since 1.1 */ function hextouricmp(s) { return s.replace(/(..)/g, "%$1"); } // ==== URIComponent ================================ /** * convert UTFa hexadecimal string to a URLComponent string such like "%67%68".
* Note that these "0-9A-Za-z!'()*-._~" characters will not * converted to "%xx" format by builtin 'encodeURIComponent()' function. * However this 'encodeURIComponentAll()' function will convert * all of characters into "%xx" format. * @param {String} s hexadecimal string * @return {String} URIComponent string such like "%67%68" * @since 1.1 */ function encodeURIComponentAll(u8) { var s = encodeURIComponent(u8); var s2 = ""; for (var i = 0; i < s.length; i++) { if (s[i] == "%") { s2 = s2 + s.substr(i, 3); i = i + 2; } else { s2 = s2 + "%" + stohex(s[i]); } } return s2; } // ==== new lines ================================ /** * convert all DOS new line("\r\n") to UNIX new line("\n") in * a String "s". * @param {String} s string * @return {String} converted string */ function newline_toUnix(s) { s = s.replace(/\r\n/mg, "\n"); return s; } /** * convert all UNIX new line("\r\n") to DOS new line("\n") in * a String "s". * @param {String} s string * @return {String} converted string */ function newline_toDos(s) { s = s.replace(/\r\n/mg, "\n"); s = s.replace(/\n/mg, "\r\n"); return s; } /*! crypto-1.1.5.js (c) 2013 Kenji Urushima | kjur.github.com/jsrsasign/license */ /* * crypto.js - Cryptographic Algorithm Provider class * * Copyright (c) 2013 Kenji Urushima (kenji.urushima@gmail.com) * * This software is licensed under the terms of the MIT License. * http://kjur.github.com/jsrsasign/license * * The above copyright and license notice shall be * included in all copies or substantial portions of the Software. */ /** * @fileOverview * @name crypto-1.1.js * @author Kenji Urushima kenji.urushima@gmail.com * @version 1.1.5 (2013-Oct-06) * @since jsrsasign 2.2 * @license MIT License */ /** * kjur's class library name space * @name KJUR * @namespace kjur's class library name space */ if (typeof KJUR == "undefined" || !KJUR) KJUR = {}; /** * kjur's cryptographic algorithm provider library name space *

* This namespace privides following crytpgrahic classes. *

    *
  • {@link KJUR.crypto.MessageDigest} - Java JCE(cryptograhic extension) style MessageDigest class
  • *
  • {@link KJUR.crypto.Signature} - Java JCE(cryptograhic extension) style Signature class
  • *
  • {@link KJUR.crypto.Util} - cryptographic utility functions and properties
  • *
* NOTE: Please ignore method summary and document of this namespace. This caused by a bug of jsdoc2. *

* @name KJUR.crypto * @namespace */ if (typeof KJUR.crypto == "undefined" || !KJUR.crypto) KJUR.crypto = {}; /** * static object for cryptographic function utilities * @name KJUR.crypto.Util * @class static object for cryptographic function utilities * @property {Array} DIGESTINFOHEAD PKCS#1 DigestInfo heading hexadecimal bytes for each hash algorithms * @property {Array} DEFAULTPROVIDER associative array of default provider name for each hash and signature algorithms * @description */ KJUR.crypto.Util = new function() { this.DIGESTINFOHEAD = { 'sha1': "3021300906052b0e03021a05000414", 'sha224': "302d300d06096086480165030402040500041c", 'sha256': "3031300d060960864801650304020105000420", 'sha384': "3041300d060960864801650304020205000430", 'sha512': "3051300d060960864801650304020305000440", 'md2': "3020300c06082a864886f70d020205000410", 'md5': "3020300c06082a864886f70d020505000410", 'ripemd160': "3021300906052b2403020105000414", }; /* * @since crypto 1.1.1 */ this.DEFAULTPROVIDER = { 'md5': 'cryptojs', 'sha1': 'cryptojs', 'sha224': 'cryptojs', 'sha256': 'cryptojs', 'sha384': 'cryptojs', 'sha512': 'cryptojs', 'ripemd160': 'cryptojs', 'hmacmd5': 'cryptojs', 'hmacsha1': 'cryptojs', 'hmacsha224': 'cryptojs', 'hmacsha256': 'cryptojs', 'hmacsha384': 'cryptojs', 'hmacsha512': 'cryptojs', 'hmacripemd160': 'cryptojs', 'MD5withRSA': 'cryptojs/jsrsa', 'SHA1withRSA': 'cryptojs/jsrsa', 'SHA224withRSA': 'cryptojs/jsrsa', 'SHA256withRSA': 'cryptojs/jsrsa', 'SHA384withRSA': 'cryptojs/jsrsa', 'SHA512withRSA': 'cryptojs/jsrsa', 'RIPEMD160withRSA': 'cryptojs/jsrsa', 'MD5withECDSA': 'cryptojs/jsrsa', 'SHA1withECDSA': 'cryptojs/jsrsa', 'SHA224withECDSA': 'cryptojs/jsrsa', 'SHA256withECDSA': 'cryptojs/jsrsa', 'SHA384withECDSA': 'cryptojs/jsrsa', 'SHA512withECDSA': 'cryptojs/jsrsa', 'RIPEMD160withECDSA': 'cryptojs/jsrsa', 'SHA1withDSA': 'cryptojs/jsrsa', 'SHA224withDSA': 'cryptojs/jsrsa', 'SHA256withDSA': 'cryptojs/jsrsa', 'MD5withRSAandMGF1': 'cryptojs/jsrsa', 'SHA1withRSAandMGF1': 'cryptojs/jsrsa', 'SHA224withRSAandMGF1': 'cryptojs/jsrsa', 'SHA256withRSAandMGF1': 'cryptojs/jsrsa', 'SHA384withRSAandMGF1': 'cryptojs/jsrsa', 'SHA512withRSAandMGF1': 'cryptojs/jsrsa', 'RIPEMD160withRSAandMGF1': 'cryptojs/jsrsa', }; /* * @since crypto 1.1.2 */ this.CRYPTOJSMESSAGEDIGESTNAME = { 'md5': 'CryptoJS.algo.MD5', 'sha1': 'CryptoJS.algo.SHA1', 'sha224': 'CryptoJS.algo.SHA224', 'sha256': 'CryptoJS.algo.SHA256', 'sha384': 'CryptoJS.algo.SHA384', 'sha512': 'CryptoJS.algo.SHA512', 'ripemd160': 'CryptoJS.algo.RIPEMD160' }; /** * get hexadecimal DigestInfo * @name getDigestInfoHex * @memberOf KJUR.crypto.Util * @function * @param {String} hHash hexadecimal hash value * @param {String} alg hash algorithm name (ex. 'sha1') * @return {String} hexadecimal string DigestInfo ASN.1 structure */ this.getDigestInfoHex = function(hHash, alg) { if (typeof this.DIGESTINFOHEAD[alg] == "undefined") throw "alg not supported in Util.DIGESTINFOHEAD: " + alg; return this.DIGESTINFOHEAD[alg] + hHash; }; /** * get PKCS#1 padded hexadecimal DigestInfo * @name getPaddedDigestInfoHex * @memberOf KJUR.crypto.Util * @function * @param {String} hHash hexadecimal hash value of message to be signed * @param {String} alg hash algorithm name (ex. 'sha1') * @param {Integer} keySize key bit length (ex. 1024) * @return {String} hexadecimal string of PKCS#1 padded DigestInfo */ this.getPaddedDigestInfoHex = function(hHash, alg, keySize) { var hDigestInfo = this.getDigestInfoHex(hHash, alg); var pmStrLen = keySize / 4; // minimum PM length if (hDigestInfo.length + 22 > pmStrLen) // len(0001+ff(*8)+00+hDigestInfo)=22 throw "key is too short for SigAlg: keylen=" + keySize + "," + alg; var hHead = "0001"; var hTail = "00" + hDigestInfo; var hMid = ""; var fLen = pmStrLen - hHead.length - hTail.length; for (var i = 0; i < fLen; i += 2) { hMid += "ff"; } var hPaddedMessage = hHead + hMid + hTail; return hPaddedMessage; }; /** * get hexadecimal hash of string with specified algorithm * @name hashString * @memberOf KJUR.crypto.Util * @function * @param {String} s input string to be hashed * @param {String} alg hash algorithm name * @return {String} hexadecimal string of hash value * @since 1.1.1 */ this.hashString = function(s, alg) { var md = new KJUR.crypto.MessageDigest({'alg': alg}); return md.digestString(s); }; /** * get hexadecimal hash of hexadecimal string with specified algorithm * @name hashHex * @memberOf KJUR.crypto.Util * @function * @param {String} sHex input hexadecimal string to be hashed * @param {String} alg hash algorithm name * @return {String} hexadecimal string of hash value * @since 1.1.1 */ this.hashHex = function(sHex, alg) { var md = new KJUR.crypto.MessageDigest({'alg': alg}); return md.digestHex(sHex); }; /** * get hexadecimal SHA1 hash of string * @name sha1 * @memberOf KJUR.crypto.Util * @function * @param {String} s input string to be hashed * @return {String} hexadecimal string of hash value * @since 1.0.3 */ this.sha1 = function(s) { var md = new KJUR.crypto.MessageDigest({'alg':'sha1', 'prov':'cryptojs'}); return md.digestString(s); }; /** * get hexadecimal SHA256 hash of string * @name sha256 * @memberOf KJUR.crypto.Util * @function * @param {String} s input string to be hashed * @return {String} hexadecimal string of hash value * @since 1.0.3 */ this.sha256 = function(s) { var md = new KJUR.crypto.MessageDigest({'alg':'sha256', 'prov':'cryptojs'}); return md.digestString(s); }; this.sha256Hex = function(s) { var md = new KJUR.crypto.MessageDigest({'alg':'sha256', 'prov':'cryptojs'}); return md.digestHex(s); }; /** * get hexadecimal SHA512 hash of string * @name sha512 * @memberOf KJUR.crypto.Util * @function * @param {String} s input string to be hashed * @return {String} hexadecimal string of hash value * @since 1.0.3 */ this.sha512 = function(s) { var md = new KJUR.crypto.MessageDigest({'alg':'sha512', 'prov':'cryptojs'}); return md.digestString(s); }; this.sha512Hex = function(s) { var md = new KJUR.crypto.MessageDigest({'alg':'sha512', 'prov':'cryptojs'}); return md.digestHex(s); }; /** * get hexadecimal MD5 hash of string * @name md5 * @memberOf KJUR.crypto.Util * @function * @param {String} s input string to be hashed * @return {String} hexadecimal string of hash value * @since 1.0.3 */ this.md5 = function(s) { var md = new KJUR.crypto.MessageDigest({'alg':'md5', 'prov':'cryptojs'}); return md.digestString(s); }; /** * get hexadecimal RIPEMD160 hash of string * @name ripemd160 * @memberOf KJUR.crypto.Util * @function * @param {String} s input string to be hashed * @return {String} hexadecimal string of hash value * @since 1.0.3 */ this.ripemd160 = function(s) { var md = new KJUR.crypto.MessageDigest({'alg':'ripemd160', 'prov':'cryptojs'}); return md.digestString(s); }; /* * @since 1.1.2 */ this.getCryptoJSMDByName = function(s) { }; }; /** * MessageDigest class which is very similar to java.security.MessageDigest class * @name KJUR.crypto.MessageDigest * @class MessageDigest class which is very similar to java.security.MessageDigest class * @param {Array} params parameters for constructor * @description *
* Currently this supports following algorithm and providers combination: *
    *
  • md5 - cryptojs
  • *
  • sha1 - cryptojs
  • *
  • sha224 - cryptojs
  • *
  • sha256 - cryptojs
  • *
  • sha384 - cryptojs
  • *
  • sha512 - cryptojs
  • *
  • ripemd160 - cryptojs
  • *
  • sha256 - sjcl (NEW from crypto.js 1.0.4)
  • *
* @example * // CryptoJS provider sample * <script src="http://crypto-js.googlecode.com/svn/tags/3.1.2/build/components/core.js"></script> * <script src="http://crypto-js.googlecode.com/svn/tags/3.1.2/build/components/sha1.js"></script> * <script src="crypto-1.0.js"></script> * var md = new KJUR.crypto.MessageDigest({alg: "sha1", prov: "cryptojs"}); * md.updateString('aaa') * var mdHex = md.digest() * * // SJCL(Stanford JavaScript Crypto Library) provider sample * <script src="http://bitwiseshiftleft.github.io/sjcl/sjcl.js"></script> * <script src="crypto-1.0.js"></script> * var md = new KJUR.crypto.MessageDigest({alg: "sha256", prov: "sjcl"}); // sjcl supports sha256 only * md.updateString('aaa') * var mdHex = md.digest() */ KJUR.crypto.MessageDigest = function(params) { var md = null; var algName = null; var provName = null; /** * set hash algorithm and provider * @name setAlgAndProvider * @memberOf KJUR.crypto.MessageDigest * @function * @param {String} alg hash algorithm name * @param {String} prov provider name * @description * @example * // for SHA1 * md.setAlgAndProvider('sha1', 'cryptojs'); * // for RIPEMD160 * md.setAlgAndProvider('ripemd160', 'cryptojs'); */ this.setAlgAndProvider = function(alg, prov) { if (alg != null && prov === undefined) prov = KJUR.crypto.Util.DEFAULTPROVIDER[alg]; // for cryptojs if (':md5:sha1:sha224:sha256:sha384:sha512:ripemd160:'.indexOf(alg) != -1 && prov == 'cryptojs') { try { this.md = eval(KJUR.crypto.Util.CRYPTOJSMESSAGEDIGESTNAME[alg]).create(); } catch (ex) { throw "setAlgAndProvider hash alg set fail alg=" + alg + "/" + ex; } this.updateString = function(str) { this.md.update(str); }; this.updateHex = function(hex) { var wHex = CryptoJS.enc.Hex.parse(hex); this.md.update(wHex); }; this.digest = function() { var hash = this.md.finalize(); return hash.toString(CryptoJS.enc.Hex); }; this.digestString = function(str) { this.updateString(str); return this.digest(); }; this.digestHex = function(hex) { this.updateHex(hex); return this.digest(); }; } if (':sha256:'.indexOf(alg) != -1 && prov == 'sjcl') { try { this.md = new sjcl.hash.sha256(); } catch (ex) { throw "setAlgAndProvider hash alg set fail alg=" + alg + "/" + ex; } this.updateString = function(str) { this.md.update(str); }; this.updateHex = function(hex) { var baHex = sjcl.codec.hex.toBits(hex); this.md.update(baHex); }; this.digest = function() { var hash = this.md.finalize(); return sjcl.codec.hex.fromBits(hash); }; this.digestString = function(str) { this.updateString(str); return this.digest(); }; this.digestHex = function(hex) { this.updateHex(hex); return this.digest(); }; } }; /** * update digest by specified string * @name updateString * @memberOf KJUR.crypto.MessageDigest * @function * @param {String} str string to update * @description * @example * md.updateString('New York'); */ this.updateString = function(str) { throw "updateString(str) not supported for this alg/prov: " + this.algName + "/" + this.provName; }; /** * update digest by specified hexadecimal string * @name updateHex * @memberOf KJUR.crypto.MessageDigest * @function * @param {String} hex hexadecimal string to update * @description * @example * md.updateHex('0afe36'); */ this.updateHex = function(hex) { throw "updateHex(hex) not supported for this alg/prov: " + this.algName + "/" + this.provName; }; /** * completes hash calculation and returns hash result * @name digest * @memberOf KJUR.crypto.MessageDigest * @function * @description * @example * md.digest() */ this.digest = function() { throw "digest() not supported for this alg/prov: " + this.algName + "/" + this.provName; }; /** * performs final update on the digest using string, then completes the digest computation * @name digestString * @memberOf KJUR.crypto.MessageDigest * @function * @param {String} str string to final update * @description * @example * md.digestString('aaa') */ this.digestString = function(str) { throw "digestString(str) not supported for this alg/prov: " + this.algName + "/" + this.provName; }; /** * performs final update on the digest using hexadecimal string, then completes the digest computation * @name digestHex * @memberOf KJUR.crypto.MessageDigest * @function * @param {String} hex hexadecimal string to final update * @description * @example * md.digestHex('0f2abd') */ this.digestHex = function(hex) { throw "digestHex(hex) not supported for this alg/prov: " + this.algName + "/" + this.provName; }; if (params !== undefined) { if (params['alg'] !== undefined) { this.algName = params['alg']; if (params['prov'] === undefined) this.provName = KJUR.crypto.Util.DEFAULTPROVIDER[this.algName]; this.setAlgAndProvider(this.algName, this.provName); } } }; /** * Mac(Message Authentication Code) class which is very similar to java.security.Mac class * @name KJUR.crypto.Mac * @class Mac class which is very similar to java.security.Mac class * @param {Array} params parameters for constructor * @description *
* Currently this supports following algorithm and providers combination: *
    *
  • hmacmd5 - cryptojs
  • *
  • hmacsha1 - cryptojs
  • *
  • hmacsha224 - cryptojs
  • *
  • hmacsha256 - cryptojs
  • *
  • hmacsha384 - cryptojs
  • *
  • hmacsha512 - cryptojs
  • *
* NOTE: HmacSHA224 and HmacSHA384 issue was fixed since jsrsasign 4.1.4. * Please use 'ext/cryptojs-312-core-fix*.js' instead of 'core.js' of original CryptoJS * to avoid those issue. * @example * var mac = new KJUR.crypto.Mac({alg: "HmacSHA1", prov: "cryptojs", "pass": "pass"}); * mac.updateString('aaa') * var macHex = md.doFinal() */ KJUR.crypto.Mac = function(params) { var mac = null; var pass = null; var algName = null; var provName = null; var algProv = null; this.setAlgAndProvider = function(alg, prov) { if (alg == null) alg = "hmacsha1"; alg = alg.toLowerCase(); if (alg.substr(0, 4) != "hmac") { throw "setAlgAndProvider unsupported HMAC alg: " + alg; } if (prov === undefined) prov = KJUR.crypto.Util.DEFAULTPROVIDER[alg]; this.algProv = alg + "/" + prov; var hashAlg = alg.substr(4); // for cryptojs if (':md5:sha1:sha224:sha256:sha384:sha512:ripemd160:'.indexOf(hashAlg) != -1 && prov == 'cryptojs') { try { var mdObj = eval(KJUR.crypto.Util.CRYPTOJSMESSAGEDIGESTNAME[hashAlg]); this.mac = CryptoJS.algo.HMAC.create(mdObj, this.pass); } catch (ex) { throw "setAlgAndProvider hash alg set fail hashAlg=" + hashAlg + "/" + ex; } this.updateString = function(str) { this.mac.update(str); }; this.updateHex = function(hex) { var wHex = CryptoJS.enc.Hex.parse(hex); this.mac.update(wHex); }; this.doFinal = function() { var hash = this.mac.finalize(); return hash.toString(CryptoJS.enc.Hex); }; this.doFinalString = function(str) { this.updateString(str); return this.doFinal(); }; this.doFinalHex = function(hex) { this.updateHex(hex); return this.doFinal(); }; } }; /** * update digest by specified string * @name updateString * @memberOf KJUR.crypto.Mac * @function * @param {String} str string to update * @description * @example * md.updateString('New York'); */ this.updateString = function(str) { throw "updateString(str) not supported for this alg/prov: " + this.algProv; }; /** * update digest by specified hexadecimal string * @name updateHex * @memberOf KJUR.crypto.Mac * @function * @param {String} hex hexadecimal string to update * @description * @example * md.updateHex('0afe36'); */ this.updateHex = function(hex) { throw "updateHex(hex) not supported for this alg/prov: " + this.algProv; }; /** * completes hash calculation and returns hash result * @name doFinal * @memberOf KJUR.crypto.Mac * @function * @description * @example * md.digest() */ this.doFinal = function() { throw "digest() not supported for this alg/prov: " + this.algProv; }; /** * performs final update on the digest using string, then completes the digest computation * @name doFinalString * @memberOf KJUR.crypto.Mac * @function * @param {String} str string to final update * @description * @example * md.digestString('aaa') */ this.doFinalString = function(str) { throw "digestString(str) not supported for this alg/prov: " + this.algProv; }; /** * performs final update on the digest using hexadecimal string, * then completes the digest computation * @name doFinalHex * @memberOf KJUR.crypto.Mac * @function * @param {String} hex hexadecimal string to final update * @description * @example * md.digestHex('0f2abd') */ this.doFinalHex = function(hex) { throw "digestHex(hex) not supported for this alg/prov: " + this.algProv; }; if (params !== undefined) { if (params['pass'] !== undefined) { this.pass = params['pass']; } if (params['alg'] !== undefined) { this.algName = params['alg']; if (params['prov'] === undefined) this.provName = KJUR.crypto.Util.DEFAULTPROVIDER[this.algName]; this.setAlgAndProvider(this.algName, this.provName); } } }; /** * Signature class which is very similar to java.security.Signature class * @name KJUR.crypto.Signature * @class Signature class which is very similar to java.security.Signature class * @param {Array} params parameters for constructor * @property {String} state Current state of this signature object whether 'SIGN', 'VERIFY' or null * @description *
* As for params of constructor's argument, it can be specify following attributes: *
    *
  • alg - signature algorithm name (ex. {MD5,SHA1,SHA224,SHA256,SHA384,SHA512,RIPEMD160}with{RSA,ECDSA,DSA})
  • *
  • provider - currently 'cryptojs/jsrsa' only
  • *
*

SUPPORTED ALGORITHMS AND PROVIDERS

* This Signature class supports following signature algorithm and provider names: *
    *
  • MD5withRSA - cryptojs/jsrsa
  • *
  • SHA1withRSA - cryptojs/jsrsa
  • *
  • SHA224withRSA - cryptojs/jsrsa
  • *
  • SHA256withRSA - cryptojs/jsrsa
  • *
  • SHA384withRSA - cryptojs/jsrsa
  • *
  • SHA512withRSA - cryptojs/jsrsa
  • *
  • RIPEMD160withRSA - cryptojs/jsrsa
  • *
  • MD5withECDSA - cryptojs/jsrsa
  • *
  • SHA1withECDSA - cryptojs/jsrsa
  • *
  • SHA224withECDSA - cryptojs/jsrsa
  • *
  • SHA256withECDSA - cryptojs/jsrsa
  • *
  • SHA384withECDSA - cryptojs/jsrsa
  • *
  • SHA512withECDSA - cryptojs/jsrsa
  • *
  • RIPEMD160withECDSA - cryptojs/jsrsa
  • *
  • MD5withRSAandMGF1 - cryptojs/jsrsa
  • *
  • SHA1withRSAandMGF1 - cryptojs/jsrsa
  • *
  • SHA224withRSAandMGF1 - cryptojs/jsrsa
  • *
  • SHA256withRSAandMGF1 - cryptojs/jsrsa
  • *
  • SHA384withRSAandMGF1 - cryptojs/jsrsa
  • *
  • SHA512withRSAandMGF1 - cryptojs/jsrsa
  • *
  • RIPEMD160withRSAandMGF1 - cryptojs/jsrsa
  • *
  • SHA1withDSA - cryptojs/jsrsa
  • *
  • SHA224withDSA - cryptojs/jsrsa
  • *
  • SHA256withDSA - cryptojs/jsrsa
  • *
* Here are supported elliptic cryptographic curve names and their aliases for ECDSA: *
    *
  • secp256k1
  • *
  • secp256r1, NIST P-256, P-256, prime256v1
  • *
  • secp384r1, NIST P-384, P-384
  • *
* NOTE1: DSA signing algorithm is also supported since crypto 1.1.5. *

EXAMPLES

* @example * // RSA signature generation * var sig = new KJUR.crypto.Signature({"alg": "SHA1withRSA"}); * sig.init(prvKeyPEM); * sig.updateString('aaa'); * var hSigVal = sig.sign(); * * // DSA signature validation * var sig2 = new KJUR.crypto.Signature({"alg": "SHA1withDSA"}); * sig2.init(certPEM); * sig.updateString('aaa'); * var isValid = sig2.verify(hSigVal); * * // ECDSA signing * var sig = new KJUR.crypto.Signature({'alg':'SHA1withECDSA'}); * sig.init(prvKeyPEM); * sig.updateString('aaa'); * var sigValueHex = sig.sign(); * * // ECDSA verifying * var sig2 = new KJUR.crypto.Signature({'alg':'SHA1withECDSA'}); * sig.init(certPEM); * sig.updateString('aaa'); * var isValid = sig.verify(sigValueHex); */ KJUR.crypto.Signature = function(params) { var prvKey = null; // RSAKey/KJUR.crypto.{ECDSA,DSA} object for signing var pubKey = null; // RSAKey/KJUR.crypto.{ECDSA,DSA} object for verifying var md = null; // KJUR.crypto.MessageDigest object var sig = null; var algName = null; var provName = null; var algProvName = null; var mdAlgName = null; var pubkeyAlgName = null; // rsa,ecdsa,rsaandmgf1(=rsapss) var state = null; var pssSaltLen = -1; var initParams = null; var sHashHex = null; // hex hash value for hex var hDigestInfo = null; var hPaddedDigestInfo = null; var hSign = null; this._setAlgNames = function() { if (this.algName.match(/^(.+)with(.+)$/)) { this.mdAlgName = RegExp.$1.toLowerCase(); this.pubkeyAlgName = RegExp.$2.toLowerCase(); } }; this._zeroPaddingOfSignature = function(hex, bitLength) { var s = ""; var nZero = bitLength / 4 - hex.length; for (var i = 0; i < nZero; i++) { s = s + "0"; } return s + hex; }; /** * set signature algorithm and provider * @name setAlgAndProvider * @memberOf KJUR.crypto.Signature * @function * @param {String} alg signature algorithm name * @param {String} prov provider name * @description * @example * md.setAlgAndProvider('SHA1withRSA', 'cryptojs/jsrsa'); */ this.setAlgAndProvider = function(alg, prov) { this._setAlgNames(); if (prov != 'cryptojs/jsrsa') throw "provider not supported: " + prov; if (':md5:sha1:sha224:sha256:sha384:sha512:ripemd160:'.indexOf(this.mdAlgName) != -1) { try { this.md = new KJUR.crypto.MessageDigest({'alg':this.mdAlgName}); } catch (ex) { throw "setAlgAndProvider hash alg set fail alg=" + this.mdAlgName + "/" + ex; } this.init = function(keyparam, pass) { var keyObj = null; try { if (pass === undefined) { keyObj = KEYUTIL.getKey(keyparam); } else { keyObj = KEYUTIL.getKey(keyparam, pass); } } catch (ex) { throw "init failed:" + ex; } if (keyObj.isPrivate === true) { this.prvKey = keyObj; this.state = "SIGN"; } else if (keyObj.isPublic === true) { this.pubKey = keyObj; this.state = "VERIFY"; } else { throw "init failed.:" + keyObj; } }; this.initSign = function(params) { if (typeof params['ecprvhex'] == 'string' && typeof params['eccurvename'] == 'string') { this.ecprvhex = params['ecprvhex']; this.eccurvename = params['eccurvename']; } else { this.prvKey = params; } this.state = "SIGN"; }; this.initVerifyByPublicKey = function(params) { if (typeof params['ecpubhex'] == 'string' && typeof params['eccurvename'] == 'string') { this.ecpubhex = params['ecpubhex']; this.eccurvename = params['eccurvename']; } else if (params instanceof KJUR.crypto.ECDSA) { this.pubKey = params; } else if (params instanceof RSAKey) { this.pubKey = params; } this.state = "VERIFY"; }; this.initVerifyByCertificatePEM = function(certPEM) { var x509 = new X509(); x509.readCertPEM(certPEM); this.pubKey = x509.subjectPublicKeyRSA; this.state = "VERIFY"; }; this.updateString = function(str) { this.md.updateString(str); }; this.updateHex = function(hex) { this.md.updateHex(hex); }; this.sign = function() { this.sHashHex = this.md.digest(); if (typeof this.ecprvhex != "undefined" && typeof this.eccurvename != "undefined") { var ec = new KJUR.crypto.ECDSA({'curve': this.eccurvename}); this.hSign = ec.signHex(this.sHashHex, this.ecprvhex); } else if (this.pubkeyAlgName == "rsaandmgf1") { this.hSign = this.prvKey.signWithMessageHashPSS(this.sHashHex, this.mdAlgName, this.pssSaltLen); } else if (this.pubkeyAlgName == "rsa") { this.hSign = this.prvKey.signWithMessageHash(this.sHashHex, this.mdAlgName); } else if (this.prvKey instanceof KJUR.crypto.ECDSA) { this.hSign = this.prvKey.signWithMessageHash(this.sHashHex); } else if (this.prvKey instanceof KJUR.crypto.DSA) { this.hSign = this.prvKey.signWithMessageHash(this.sHashHex); } else { throw "Signature: unsupported public key alg: " + this.pubkeyAlgName; } return this.hSign; }; this.signString = function(str) { this.updateString(str); this.sign(); }; this.signHex = function(hex) { this.updateHex(hex); this.sign(); }; this.verify = function(hSigVal) { this.sHashHex = this.md.digest(); if (typeof this.ecpubhex != "undefined" && typeof this.eccurvename != "undefined") { var ec = new KJUR.crypto.ECDSA({curve: this.eccurvename}); return ec.verifyHex(this.sHashHex, hSigVal, this.ecpubhex); } else if (this.pubkeyAlgName == "rsaandmgf1") { return this.pubKey.verifyWithMessageHashPSS(this.sHashHex, hSigVal, this.mdAlgName, this.pssSaltLen); } else if (this.pubkeyAlgName == "rsa") { return this.pubKey.verifyWithMessageHash(this.sHashHex, hSigVal); } else if (this.pubKey instanceof KJUR.crypto.ECDSA) { return this.pubKey.verifyWithMessageHash(this.sHashHex, hSigVal); } else if (this.pubKey instanceof KJUR.crypto.DSA) { return this.pubKey.verifyWithMessageHash(this.sHashHex, hSigVal); } else { throw "Signature: unsupported public key alg: " + this.pubkeyAlgName; } }; } }; /** * Initialize this object for signing or verifying depends on key * @name init * @memberOf KJUR.crypto.Signature * @function * @param {Object} key specifying public or private key as plain/encrypted PKCS#5/8 PEM file, certificate PEM or {@link RSAKey}, {@link KJUR.crypto.DSA} or {@link KJUR.crypto.ECDSA} object * @param {String} pass (OPTION) passcode for encrypted private key * @since crypto 1.1.3 * @description * This method is very useful initialize method for Signature class since * you just specify key then this method will automatically initialize it * using {@link KEYUTIL.getKey} method. * As for 'key', following argument type are supported: *
signing
*
    *
  • PEM formatted PKCS#8 encrypted RSA/ECDSA private key concluding "BEGIN ENCRYPTED PRIVATE KEY"
  • *
  • PEM formatted PKCS#5 encrypted RSA/DSA private key concluding "BEGIN RSA/DSA PRIVATE KEY" and ",ENCRYPTED"
  • *
  • PEM formatted PKCS#8 plain RSA/ECDSA private key concluding "BEGIN PRIVATE KEY"
  • *
  • PEM formatted PKCS#5 plain RSA/DSA private key concluding "BEGIN RSA/DSA PRIVATE KEY" without ",ENCRYPTED"
  • *
  • RSAKey object of private key
  • *
  • KJUR.crypto.ECDSA object of private key
  • *
  • KJUR.crypto.DSA object of private key
  • *
*
verification
*
    *
  • PEM formatted PKCS#8 RSA/EC/DSA public key concluding "BEGIN PUBLIC KEY"
  • *
  • PEM formatted X.509 certificate with RSA/EC/DSA public key concluding * "BEGIN CERTIFICATE", "BEGIN X509 CERTIFICATE" or "BEGIN TRUSTED CERTIFICATE".
  • *
  • RSAKey object of public key
  • *
  • KJUR.crypto.ECDSA object of public key
  • *
  • KJUR.crypto.DSA object of public key
  • *
* @example * sig.init(sCertPEM) */ this.init = function(key, pass) { throw "init(key, pass) not supported for this alg:prov=" + this.algProvName; }; /** * Initialize this object for verifying with a public key * @name initVerifyByPublicKey * @memberOf KJUR.crypto.Signature * @function * @param {Object} param RSAKey object of public key or associative array for ECDSA * @since 1.0.2 * @deprecated from crypto 1.1.5. please use init() method instead. * @description * Public key information will be provided as 'param' parameter and the value will be * following: *
    *
  • {@link RSAKey} object for RSA verification
  • *
  • associative array for ECDSA verification * (ex. {'ecpubhex': '041f..', 'eccurvename': 'secp256r1'}) *
  • *
* @example * sig.initVerifyByPublicKey(rsaPrvKey) */ this.initVerifyByPublicKey = function(rsaPubKey) { throw "initVerifyByPublicKey(rsaPubKeyy) not supported for this alg:prov=" + this.algProvName; }; /** * Initialize this object for verifying with a certficate * @name initVerifyByCertificatePEM * @memberOf KJUR.crypto.Signature * @function * @param {String} certPEM PEM formatted string of certificate * @since 1.0.2 * @deprecated from crypto 1.1.5. please use init() method instead. * @description * @example * sig.initVerifyByCertificatePEM(certPEM) */ this.initVerifyByCertificatePEM = function(certPEM) { throw "initVerifyByCertificatePEM(certPEM) not supported for this alg:prov=" + this.algProvName; }; /** * Initialize this object for signing * @name initSign * @memberOf KJUR.crypto.Signature * @function * @param {Object} param RSAKey object of public key or associative array for ECDSA * @deprecated from crypto 1.1.5. please use init() method instead. * @description * Private key information will be provided as 'param' parameter and the value will be * following: *
    *
  • {@link RSAKey} object for RSA signing
  • *
  • associative array for ECDSA signing * (ex. {'ecprvhex': '1d3f..', 'eccurvename': 'secp256r1'})
  • *
* @example * sig.initSign(prvKey) */ this.initSign = function(prvKey) { throw "initSign(prvKey) not supported for this alg:prov=" + this.algProvName; }; /** * Updates the data to be signed or verified by a string * @name updateString * @memberOf KJUR.crypto.Signature * @function * @param {String} str string to use for the update * @description * @example * sig.updateString('aaa') */ this.updateString = function(str) { throw "updateString(str) not supported for this alg:prov=" + this.algProvName; }; /** * Updates the data to be signed or verified by a hexadecimal string * @name updateHex * @memberOf KJUR.crypto.Signature * @function * @param {String} hex hexadecimal string to use for the update * @description * @example * sig.updateHex('1f2f3f') */ this.updateHex = function(hex) { throw "updateHex(hex) not supported for this alg:prov=" + this.algProvName; }; /** * Returns the signature bytes of all data updates as a hexadecimal string * @name sign * @memberOf KJUR.crypto.Signature * @function * @return the signature bytes as a hexadecimal string * @description * @example * var hSigValue = sig.sign() */ this.sign = function() { throw "sign() not supported for this alg:prov=" + this.algProvName; }; /** * performs final update on the sign using string, then returns the signature bytes of all data updates as a hexadecimal string * @name signString * @memberOf KJUR.crypto.Signature * @function * @param {String} str string to final update * @return the signature bytes of a hexadecimal string * @description * @example * var hSigValue = sig.signString('aaa') */ this.signString = function(str) { throw "digestString(str) not supported for this alg:prov=" + this.algProvName; }; /** * performs final update on the sign using hexadecimal string, then returns the signature bytes of all data updates as a hexadecimal string * @name signHex * @memberOf KJUR.crypto.Signature * @function * @param {String} hex hexadecimal string to final update * @return the signature bytes of a hexadecimal string * @description * @example * var hSigValue = sig.signHex('1fdc33') */ this.signHex = function(hex) { throw "digestHex(hex) not supported for this alg:prov=" + this.algProvName; }; /** * verifies the passed-in signature. * @name verify * @memberOf KJUR.crypto.Signature * @function * @param {String} str string to final update * @return {Boolean} true if the signature was verified, otherwise false * @description * @example * var isValid = sig.verify('1fbcefdca4823a7(snip)') */ this.verify = function(hSigVal) { throw "verify(hSigVal) not supported for this alg:prov=" + this.algProvName; }; this.initParams = params; if (params !== undefined) { if (params['alg'] !== undefined) { this.algName = params['alg']; if (params['prov'] === undefined) { this.provName = KJUR.crypto.Util.DEFAULTPROVIDER[this.algName]; } else { this.provName = params['prov']; } this.algProvName = this.algName + ":" + this.provName; this.setAlgAndProvider(this.algName, this.provName); this._setAlgNames(); } if (params['psssaltlen'] !== undefined) this.pssSaltLen = params['psssaltlen']; if (params['prvkeypem'] !== undefined) { if (params['prvkeypas'] !== undefined) { throw "both prvkeypem and prvkeypas parameters not supported"; } else { try { var prvKey = new RSAKey(); prvKey.readPrivateKeyFromPEMString(params['prvkeypem']); this.initSign(prvKey); } catch (ex) { throw "fatal error to load pem private key: " + ex; } } } } }; /** * static object for cryptographic function utilities * @name KJUR.crypto.OID * @class static object for cryptography related OIDs * @property {Array} oidhex2name key value of hexadecimal OID and its name * (ex. '2a8648ce3d030107' and 'secp256r1') * @since crypto 1.1.3 * @description */ KJUR.crypto.OID = new function() { this.oidhex2name = { '2a864886f70d010101': 'rsaEncryption', '2a8648ce3d0201': 'ecPublicKey', '2a8648ce380401': 'dsa', '2a8648ce3d030107': 'secp256r1', '2b8104001f': 'secp192k1', '2b81040021': 'secp224r1', '2b8104000a': 'secp256k1', '2b81040023': 'secp521r1', '2b81040022': 'secp384r1', '2a8648ce380403': 'SHA1withDSA', // 1.2.840.10040.4.3 '608648016503040301': 'SHA224withDSA', // 2.16.840.1.101.3.4.3.1 '608648016503040302': 'SHA256withDSA', // 2.16.840.1.101.3.4.3.2 }; }; /*! rsasign-1.2.7.js (c) 2012 Kenji Urushima | kjur.github.com/jsrsasign/license */ /* * rsa-sign.js - adding signing functions to RSAKey class. * * version: 1.2.7 (2013 Aug 25) * * Copyright (c) 2010-2013 Kenji Urushima (kenji.urushima@gmail.com) * * This software is licensed under the terms of the MIT License. * http://kjur.github.com/jsrsasign/license/ * * The above copyright and license notice shall be * included in all copies or substantial portions of the Software. */ /** * @fileOverview * @name rsasign-1.2.js * @author Kenji Urushima kenji.urushima@gmail.com * @version rsasign 1.2.7 * @license MIT License */ var _RE_HEXDECONLY = new RegExp(""); _RE_HEXDECONLY.compile("[^0-9a-f]", "gi"); // ======================================================================== // Signature Generation // ======================================================================== function _rsasign_getHexPaddedDigestInfoForString(s, keySize, hashAlg) { var hashFunc = function(s) { return KJUR.crypto.Util.hashString(s, hashAlg); }; var sHashHex = hashFunc(s); return KJUR.crypto.Util.getPaddedDigestInfoHex(sHashHex, hashAlg, keySize); } function _zeroPaddingOfSignature(hex, bitLength) { var s = ""; var nZero = bitLength / 4 - hex.length; for (var i = 0; i < nZero; i++) { s = s + "0"; } return s + hex; } /** * sign for a message string with RSA private key.
* @name signString * @memberOf RSAKey * @function * @param {String} s message string to be signed. * @param {String} hashAlg hash algorithm name for signing.
* @return returns hexadecimal string of signature value. */ function _rsasign_signString(s, hashAlg) { var hashFunc = function(s) { return KJUR.crypto.Util.hashString(s, hashAlg); }; var sHashHex = hashFunc(s); return this.signWithMessageHash(sHashHex, hashAlg); } /** * sign hash value of message to be signed with RSA private key.
* @name signWithMessageHash * @memberOf RSAKey * @function * @param {String} sHashHex hexadecimal string of hash value of message to be signed. * @param {String} hashAlg hash algorithm name for signing.
* @return returns hexadecimal string of signature value. * @since rsasign 1.2.6 */ function _rsasign_signWithMessageHash(sHashHex, hashAlg) { var hPM = KJUR.crypto.Util.getPaddedDigestInfoHex(sHashHex, hashAlg, this.n.bitLength()); var biPaddedMessage = parseBigInt(hPM, 16); var biSign = this.doPrivate(biPaddedMessage); var hexSign = biSign.toString(16); return _zeroPaddingOfSignature(hexSign, this.n.bitLength()); } function _rsasign_signStringWithSHA1(s) { return _rsasign_signString.call(this, s, 'sha1'); } function _rsasign_signStringWithSHA256(s) { return _rsasign_signString.call(this, s, 'sha256'); } // PKCS#1 (PSS) mask generation function function pss_mgf1_str(seed, len, hash) { var mask = '', i = 0; while (mask.length < len) { mask += hextorstr(hash(rstrtohex(seed + String.fromCharCode.apply(String, [ (i & 0xff000000) >> 24, (i & 0x00ff0000) >> 16, (i & 0x0000ff00) >> 8, i & 0x000000ff])))); i += 1; } return mask; } /** * sign for a message string with RSA private key by PKCS#1 PSS signing.
* @name signStringPSS * @memberOf RSAKey * @function * @param {String} s message string to be signed. * @param {String} hashAlg hash algorithm name for signing. * @param {Integer} sLen salt byte length from 0 to (keybytelen - hashbytelen - 2). * There are two special values: *
    *
  • -1: sets the salt length to the digest length
  • *
  • -2: sets the salt length to maximum permissible value * (i.e. keybytelen - hashbytelen - 2)
  • *
* DEFAULT is -1. (NOTE: OpenSSL's default is -2.) * @return returns hexadecimal string of signature value. */ function _rsasign_signStringPSS(s, hashAlg, sLen) { var hashFunc = function(sHex) { return KJUR.crypto.Util.hashHex(sHex, hashAlg); } var hHash = hashFunc(rstrtohex(s)); if (sLen === undefined) sLen = -1; return this.signWithMessageHashPSS(hHash, hashAlg, sLen); } /** * sign hash value of message with RSA private key by PKCS#1 PSS signing.
* @name signWithMessageHashPSS * @memberOf RSAKey * @function * @param {String} hHash hexadecimal hash value of message to be signed. * @param {String} hashAlg hash algorithm name for signing. * @param {Integer} sLen salt byte length from 0 to (keybytelen - hashbytelen - 2). * There are two special values: *
    *
  • -1: sets the salt length to the digest length
  • *
  • -2: sets the salt length to maximum permissible value * (i.e. keybytelen - hashbytelen - 2)
  • *
* DEFAULT is -1. (NOTE: OpenSSL's default is -2.) * @return returns hexadecimal string of signature value. * @since rsasign 1.2.6 */ function _rsasign_signWithMessageHashPSS(hHash, hashAlg, sLen) { var mHash = hextorstr(hHash); var hLen = mHash.length; var emBits = this.n.bitLength() - 1; var emLen = Math.ceil(emBits / 8); var i; var hashFunc = function(sHex) { return KJUR.crypto.Util.hashHex(sHex, hashAlg); } if (sLen === -1 || sLen === undefined) { sLen = hLen; // same as hash length } else if (sLen === -2) { sLen = emLen - hLen - 2; // maximum } else if (sLen < -2) { throw "invalid salt length"; } if (emLen < (hLen + sLen + 2)) { throw "data too long"; } var salt = ''; if (sLen > 0) { salt = new Array(sLen); new SecureRandom().nextBytes(salt); salt = String.fromCharCode.apply(String, salt); } var H = hextorstr(hashFunc(rstrtohex('\x00\x00\x00\x00\x00\x00\x00\x00' + mHash + salt))); var PS = []; for (i = 0; i < emLen - sLen - hLen - 2; i += 1) { PS[i] = 0x00; } var DB = String.fromCharCode.apply(String, PS) + '\x01' + salt; var dbMask = pss_mgf1_str(H, DB.length, hashFunc); var maskedDB = []; for (i = 0; i < DB.length; i += 1) { maskedDB[i] = DB.charCodeAt(i) ^ dbMask.charCodeAt(i); } var mask = (0xff00 >> (8 * emLen - emBits)) & 0xff; maskedDB[0] &= ~mask; for (i = 0; i < hLen; i++) { maskedDB.push(H.charCodeAt(i)); } maskedDB.push(0xbc); return _zeroPaddingOfSignature(this.doPrivate(new BigInteger(maskedDB)).toString(16), this.n.bitLength()); } // ======================================================================== // Signature Verification // ======================================================================== function _rsasign_getDecryptSignatureBI(biSig, hN, hE) { var rsa = new RSAKey(); rsa.setPublic(hN, hE); var biDecryptedSig = rsa.doPublic(biSig); return biDecryptedSig; } function _rsasign_getHexDigestInfoFromSig(biSig, hN, hE) { var biDecryptedSig = _rsasign_getDecryptSignatureBI(biSig, hN, hE); var hDigestInfo = biDecryptedSig.toString(16).replace(/^1f+00/, ''); return hDigestInfo; } function _rsasign_getAlgNameAndHashFromHexDisgestInfo(hDigestInfo) { for (var algName in KJUR.crypto.Util.DIGESTINFOHEAD) { var head = KJUR.crypto.Util.DIGESTINFOHEAD[algName]; var len = head.length; if (hDigestInfo.substring(0, len) == head) { var a = [algName, hDigestInfo.substring(len)]; return a; } } return []; } function _rsasign_verifySignatureWithArgs(sMsg, biSig, hN, hE) { var hDigestInfo = _rsasign_getHexDigestInfoFromSig(biSig, hN, hE); var digestInfoAry = _rsasign_getAlgNameAndHashFromHexDisgestInfo(hDigestInfo); if (digestInfoAry.length == 0) return false; var algName = digestInfoAry[0]; var diHashValue = digestInfoAry[1]; var ff = function(s) { return KJUR.crypto.Util.hashString(s, algName); }; var msgHashValue = ff(sMsg); return (diHashValue == msgHashValue); } function _rsasign_verifyHexSignatureForMessage(hSig, sMsg) { var biSig = parseBigInt(hSig, 16); var result = _rsasign_verifySignatureWithArgs(sMsg, biSig, this.n.toString(16), this.e.toString(16)); return result; } /** * verifies a sigature for a message string with RSA public key.
* @name verifyString * @memberOf RSAKey# * @function * @param {String} sMsg message string to be verified. * @param {String} hSig hexadecimal string of siganture.
* non-hexadecimal charactors including new lines will be ignored. * @return returns 1 if valid, otherwise 0 */ function _rsasign_verifyString(sMsg, hSig) { hSig = hSig.replace(_RE_HEXDECONLY, ''); hSig = hSig.replace(/[ \n]+/g, ""); var biSig = parseBigInt(hSig, 16); if (biSig.bitLength() > this.n.bitLength()) return 0; var biDecryptedSig = this.doPublic(biSig); var hDigestInfo = biDecryptedSig.toString(16).replace(/^1f+00/, ''); var digestInfoAry = _rsasign_getAlgNameAndHashFromHexDisgestInfo(hDigestInfo); if (digestInfoAry.length == 0) return false; var algName = digestInfoAry[0]; var diHashValue = digestInfoAry[1]; var ff = function(s) { return KJUR.crypto.Util.hashString(s, algName); }; var msgHashValue = ff(sMsg); return (diHashValue == msgHashValue); } /** * verifies a sigature for a message string with RSA public key.
* @name verifyWithMessageHash * @memberOf RSAKey * @function * @param {String} sHashHex hexadecimal hash value of message to be verified. * @param {String} hSig hexadecimal string of siganture.
* non-hexadecimal charactors including new lines will be ignored. * @return returns 1 if valid, otherwise 0 * @since rsasign 1.2.6 */ function _rsasign_verifyWithMessageHash(sHashHex, hSig) { hSig = hSig.replace(_RE_HEXDECONLY, ''); hSig = hSig.replace(/[ \n]+/g, ""); var biSig = parseBigInt(hSig, 16); if (biSig.bitLength() > this.n.bitLength()) return 0; var biDecryptedSig = this.doPublic(biSig); var hDigestInfo = biDecryptedSig.toString(16).replace(/^1f+00/, ''); var digestInfoAry = _rsasign_getAlgNameAndHashFromHexDisgestInfo(hDigestInfo); if (digestInfoAry.length == 0) return false; var algName = digestInfoAry[0]; var diHashValue = digestInfoAry[1]; return (diHashValue == sHashHex); } /** * verifies a sigature for a message string with RSA public key by PKCS#1 PSS sign.
* @name verifyStringPSS * @memberOf RSAKey * @function * @param {String} sMsg message string to be verified. * @param {String} hSig hexadecimal string of signature value * @param {String} hashAlg hash algorithm name * @param {Integer} sLen salt byte length from 0 to (keybytelen - hashbytelen - 2). * There are two special values: *
    *
  • -1: sets the salt length to the digest length
  • *
  • -2: sets the salt length to maximum permissible value * (i.e. keybytelen - hashbytelen - 2)
  • *
* DEFAULT is -1. (NOTE: OpenSSL's default is -2.) * @return returns true if valid, otherwise false */ function _rsasign_verifyStringPSS(sMsg, hSig, hashAlg, sLen) { var hashFunc = function(sHex) { return KJUR.crypto.Util.hashHex(sHex, hashAlg); }; var hHash = hashFunc(rstrtohex(sMsg)); if (sLen === undefined) sLen = -1; return this.verifyWithMessageHashPSS(hHash, hSig, hashAlg, sLen); } /** * verifies a sigature for a hash value of message string with RSA public key by PKCS#1 PSS sign.
* @name verifyWithMessageHashPSS * @memberOf RSAKey * @function * @param {String} hHash hexadecimal hash value of message string to be verified. * @param {String} hSig hexadecimal string of signature value * @param {String} hashAlg hash algorithm name * @param {Integer} sLen salt byte length from 0 to (keybytelen - hashbytelen - 2). * There are two special values: *
    *
  • -1: sets the salt length to the digest length
  • *
  • -2: sets the salt length to maximum permissible value * (i.e. keybytelen - hashbytelen - 2)
  • *
* DEFAULT is -1 (NOTE: OpenSSL's default is -2.) * @return returns true if valid, otherwise false * @since rsasign 1.2.6 */ function _rsasign_verifyWithMessageHashPSS(hHash, hSig, hashAlg, sLen) { var biSig = new BigInteger(hSig, 16); if (biSig.bitLength() > this.n.bitLength()) { return false; } var hashFunc = function(sHex) { return KJUR.crypto.Util.hashHex(sHex, hashAlg); }; var mHash = hextorstr(hHash); var hLen = mHash.length; var emBits = this.n.bitLength() - 1; var emLen = Math.ceil(emBits / 8); var i; if (sLen === -1 || sLen === undefined) { sLen = hLen; // same as hash length } else if (sLen === -2) { sLen = emLen - hLen - 2; // recover } else if (sLen < -2) { throw "invalid salt length"; } if (emLen < (hLen + sLen + 2)) { throw "data too long"; } var em = this.doPublic(biSig).toByteArray(); for (i = 0; i < em.length; i += 1) { em[i] &= 0xff; } while (em.length < emLen) { em.unshift(0); } if (em[emLen -1] !== 0xbc) { throw "encoded message does not end in 0xbc"; } em = String.fromCharCode.apply(String, em); var maskedDB = em.substr(0, emLen - hLen - 1); var H = em.substr(maskedDB.length, hLen); var mask = (0xff00 >> (8 * emLen - emBits)) & 0xff; if ((maskedDB.charCodeAt(0) & mask) !== 0) { throw "bits beyond keysize not zero"; } var dbMask = pss_mgf1_str(H, maskedDB.length, hashFunc); var DB = []; for (i = 0; i < maskedDB.length; i += 1) { DB[i] = maskedDB.charCodeAt(i) ^ dbMask.charCodeAt(i); } DB[0] &= ~mask; var checkLen = emLen - hLen - sLen - 2; for (i = 0; i < checkLen; i += 1) { if (DB[i] !== 0x00) { throw "leftmost octets not zero"; } } if (DB[checkLen] !== 0x01) { throw "0x01 marker not found"; } return H === hextorstr(hashFunc(rstrtohex('\x00\x00\x00\x00\x00\x00\x00\x00' + mHash + String.fromCharCode.apply(String, DB.slice(-sLen))))); } RSAKey.prototype.signWithMessageHash = _rsasign_signWithMessageHash; RSAKey.prototype.signString = _rsasign_signString; RSAKey.prototype.signStringWithSHA1 = _rsasign_signStringWithSHA1; RSAKey.prototype.signStringWithSHA256 = _rsasign_signStringWithSHA256; RSAKey.prototype.sign = _rsasign_signString; RSAKey.prototype.signWithSHA1 = _rsasign_signStringWithSHA1; RSAKey.prototype.signWithSHA256 = _rsasign_signStringWithSHA256; RSAKey.prototype.signWithMessageHashPSS = _rsasign_signWithMessageHashPSS; RSAKey.prototype.signStringPSS = _rsasign_signStringPSS; RSAKey.prototype.signPSS = _rsasign_signStringPSS; RSAKey.SALT_LEN_HLEN = -1; RSAKey.SALT_LEN_MAX = -2; RSAKey.prototype.verifyWithMessageHash = _rsasign_verifyWithMessageHash; RSAKey.prototype.verifyString = _rsasign_verifyString; RSAKey.prototype.verifyHexSignatureForMessage = _rsasign_verifyHexSignatureForMessage; RSAKey.prototype.verify = _rsasign_verifyString; RSAKey.prototype.verifyHexSignatureForByteArrayMessage = _rsasign_verifyHexSignatureForMessage; RSAKey.prototype.verifyWithMessageHashPSS = _rsasign_verifyWithMessageHashPSS; RSAKey.prototype.verifyStringPSS = _rsasign_verifyStringPSS; RSAKey.prototype.verifyPSS = _rsasign_verifyStringPSS; RSAKey.SALT_LEN_RECOVER = -2; /** * @name RSAKey * @class key of RSA public key algorithm * @description Tom Wu's RSA Key class and extension */ // // rsa-pem.js - adding function for reading/writing PKCS#1 & PKCS#8 PEM private key // and reading/wriring x509 public key to RSAKey class // // version: 1.0 (2010-Jun-03) // version: 1.1 (2012-Feb-21) // version: 1.2 (2012-Jun-23) // // Copyright (c) 2010 Kenji Urushima (kenji.urushima@gmail.com) // Copyright (c) 2012 Adrian Pasternak (["adrian", "pasternak", "@", "gmail", ".", "com"].join("")) // // This software is licensed under the terms of the MIT License. // http://www.opensource.org/licenses/mit-license.php // // The above copyright and license notice shall be // included in all copies or substantial portions of the Software. // function _rsapem_extractEncodedData(sPEMPrivateKey) { var s = sPEMPrivateKey; s = s.replace(/[ \n]+/g, ""); return s; } function _rsapem_getPosArrayOfChildrenFromHex(hPrivateKey) { var a = new Array(); var v1 = _asnhex_getStartPosOfV_AtObj(hPrivateKey, 0); var n1 = _asnhex_getPosOfNextSibling_AtObj(hPrivateKey, v1); var e1 = _asnhex_getPosOfNextSibling_AtObj(hPrivateKey, n1); var d1 = _asnhex_getPosOfNextSibling_AtObj(hPrivateKey, e1); var p1 = _asnhex_getPosOfNextSibling_AtObj(hPrivateKey, d1); var q1 = _asnhex_getPosOfNextSibling_AtObj(hPrivateKey, p1); var dp1 = _asnhex_getPosOfNextSibling_AtObj(hPrivateKey, q1); var dq1 = _asnhex_getPosOfNextSibling_AtObj(hPrivateKey, dp1); var co1 = _asnhex_getPosOfNextSibling_AtObj(hPrivateKey, dq1); a.push(v1, n1, e1, d1, p1, q1, dp1, dq1, co1); return a; } function _rsapem_getHexValueArrayOfChildrenFromHex(hPrivateKey) { var posArray = _rsapem_getPosArrayOfChildrenFromHex(hPrivateKey); var v = _asnhex_getHexOfV_AtObj(hPrivateKey, posArray[0]); var n = _asnhex_getHexOfV_AtObj(hPrivateKey, posArray[1]); var e = _asnhex_getHexOfV_AtObj(hPrivateKey, posArray[2]); var d = _asnhex_getHexOfV_AtObj(hPrivateKey, posArray[3]); var p = _asnhex_getHexOfV_AtObj(hPrivateKey, posArray[4]); var q = _asnhex_getHexOfV_AtObj(hPrivateKey, posArray[5]); var dp = _asnhex_getHexOfV_AtObj(hPrivateKey, posArray[6]); var dq = _asnhex_getHexOfV_AtObj(hPrivateKey, posArray[7]); var co = _asnhex_getHexOfV_AtObj(hPrivateKey, posArray[8]); var a = new Array(); a.push(v, n, e, d, p, q, dp, dq, co); return a; } function _rsapem_getPosArrayOfChildrenFromPublicKeyHex(hPrivateKey) { var a = new Array(); var header = _asnhex_getStartPosOfV_AtObj(hPrivateKey, 0); var keys = _asnhex_getPosOfNextSibling_AtObj(hPrivateKey, header); a.push(header, keys); return a; } function _rsapem_getPosArrayOfChildrenFromPrivateKeyHex(hPrivateKey) { var a = new Array(); var integer = _asnhex_getStartPosOfV_AtObj(hPrivateKey, 0); var header = _asnhex_getPosOfNextSibling_AtObj(hPrivateKey, integer); var keys = _asnhex_getPosOfNextSibling_AtObj(hPrivateKey, header); a.push(integer, header, keys); return a; } function _rsapem_getHexValueArrayOfChildrenFromPublicKeyHex(hPrivateKey) { var posArray = _rsapem_getPosArrayOfChildrenFromPublicKeyHex(hPrivateKey); var headerVal = _asnhex_getHexOfV_AtObj(hPrivateKey, posArray[0]); var keysVal = _asnhex_getHexOfV_AtObj(hPrivateKey, posArray[1]); var keysSequence = keysVal.substring(2); posArray = _rsapem_getPosArrayOfChildrenFromPublicKeyHex(keysSequence); var modulus = _asnhex_getHexOfV_AtObj(keysSequence, posArray[0]); var publicExp = _asnhex_getHexOfV_AtObj(keysSequence, posArray[1]); var a = new Array(); a.push(modulus, publicExp); return a; } function _rsapem_getHexValueArrayOfChildrenFromPrivateKeyHex(hPrivateKey) { var posArray = _rsapem_getPosArrayOfChildrenFromPrivateKeyHex(hPrivateKey); var integerVal = _asnhex_getHexOfV_AtObj(hPrivateKey, posArray[0]); var headerVal = _asnhex_getHexOfV_AtObj(hPrivateKey, posArray[1]); var keysVal = _asnhex_getHexOfV_AtObj(hPrivateKey, posArray[2]); var keysSequence = keysVal.substring(2); return _rsapem_getHexValueArrayOfChildrenFromHex(keysSequence); } function _rsapem_readPrivateKeyFromPkcs1PemString(keyPEM) { var keyB64 = _rsapem_extractEncodedData(keyPEM); var keyHex = b64tohex(keyB64) // depends base64.js var a = _rsapem_getHexValueArrayOfChildrenFromHex(keyHex); this.setPrivateEx(a[1],a[2],a[3],a[4],a[5],a[6],a[7],a[8]); } function _rsapem_readPrivateKeyFromPkcs8PemString(keyPEM) { var keyB64 = _rsapem_extractEncodedData(keyPEM); var keyHex = b64tohex(keyB64) // depends base64.js var a = _rsapem_getHexValueArrayOfChildrenFromPrivateKeyHex(keyHex); this.setPrivateEx(a[1],a[2],a[3],a[4],a[5],a[6],a[7],a[8]); } function _rsapem_readPublicKeyFromX509PemString(keyPEM) { var keyB64 = _rsapem_extractEncodedData(keyPEM); var keyHex = b64tohex(keyB64) // depends base64.js var a = _rsapem_getHexValueArrayOfChildrenFromPublicKeyHex(keyHex); this.setPublic(a[0],a[1]); } /** * Pad string with leading zeros, to use even number of bytes. */ function _rsapem_padWithZero(numString) { if (numString.length % 2 == 1) { return "0" + numString; } return numString; } /** * Encode length in DER format (if length <0x80, then one byte, else first byte is 0x80 + length of length :) + n-bytes of length). */ function _rsapem_encodeLength(length) { if (length >= parseInt("80", 16)) { var realLength = _rsapem_padWithZero(length.toString(16)); var lengthOfLength = (realLength.length / 2); return (parseInt("80", 16) + lengthOfLength).toString(16) + realLength; } else { return _rsapem_padWithZero(length.toString(16)); } } /** * Encode number in DER encoding ("02" + length + number). */ function _rsapem_derEncodeNumber(number) { var numberString = _rsapem_padWithZero(number.toString(16)); if (numberString[0] > '7') { numberString = "00" + numberString; } var lenString = _rsapem_encodeLength(numberString.length / 2); return "02" + lenString + numberString; } /** * Converts private & public part of given key to ASN1 Hex String. */ function _rsapem_privateKeyToPkcs1HexString(rsaKey) { var result = _rsapem_derEncodeNumber(0); result += _rsapem_derEncodeNumber(rsaKey.n); result += _rsapem_derEncodeNumber(rsaKey.e); result += _rsapem_derEncodeNumber(rsaKey.d); result += _rsapem_derEncodeNumber(rsaKey.p); result += _rsapem_derEncodeNumber(rsaKey.q); result += _rsapem_derEncodeNumber(rsaKey.dmp1); result += _rsapem_derEncodeNumber(rsaKey.dmq1); result += _rsapem_derEncodeNumber(rsaKey.coeff); var fullLen = _rsapem_encodeLength(result.length / 2); return '30' + fullLen + result; } /** * Converts private & public part of given key to PKCS#8 Hex String. */ function _rsapem_privateKeyToPkcs8HexString(rsaKey) { var zeroInteger = "020100"; var encodedIdentifier = "06092A864886F70D010101"; var encodedNull = "0500"; var headerSequence = "300D" + encodedIdentifier + encodedNull; var keySequence = _rsapem_privateKeyToPkcs1HexString(rsaKey); var keyOctetString = "04" + _rsapem_encodeLength(keySequence.length / 2) + keySequence; var mainSequence = zeroInteger + headerSequence + keyOctetString; return "30" + _rsapem_encodeLength(mainSequence.length / 2) + mainSequence; } /** * Converts public part of given key to ASN1 Hex String. */ function _rsapem_publicKeyToX509HexString(rsaKey) { var encodedIdentifier = "06092A864886F70D010101"; var encodedNull = "0500"; var headerSequence = "300D" + encodedIdentifier + encodedNull; var keys = _rsapem_derEncodeNumber(rsaKey.n); keys += _rsapem_derEncodeNumber(rsaKey.e); var keySequence = "0030" + _rsapem_encodeLength(keys.length / 2) + keys; var bitstring = "03" + _rsapem_encodeLength(keySequence.length / 2) + keySequence; var mainSequence = headerSequence + bitstring; return "30" + _rsapem_encodeLength(mainSequence.length / 2) + mainSequence; } /** * Output private & public part of the key in PKCS#1 PEM format. */ function _rsapem_privateKeyToPkcs1PemString() { return hex2b64(_rsapem_privateKeyToPkcs1HexString(this)); } /** * Output private & public part of the key in PKCS#8 PEM format. */ function _rsapem_privateKeyToPkcs8PemString() { return hex2b64(_rsapem_privateKeyToPkcs8HexString(this)); } /** * Output public part of the key in x509 PKCS#1 PEM format. */ function _rsapem_publicKeyToX509PemString() { return hex2b64(_rsapem_publicKeyToX509HexString(this)); } function _rsa_splitKey(key, line) { var splitKey = ""; for (var i = 0; i < key.length; i++) { if (i % line == 0 && i != 0 && i != (key.length - 1)) { splitKey += "\n"; } splitKey += key[i]; } return splitKey; } RSAKey.prototype.readPrivateKeyFromPkcs1PemString = _rsapem_readPrivateKeyFromPkcs1PemString; RSAKey.prototype.privateKeyToPkcs1PemString = _rsapem_privateKeyToPkcs1PemString; RSAKey.prototype.readPrivateKeyFromPkcs8PemString = _rsapem_readPrivateKeyFromPkcs8PemString; RSAKey.prototype.privateKeyToPkcs8PemString = _rsapem_privateKeyToPkcs8PemString; RSAKey.prototype.readPublicKeyFromX509PEMString = _rsapem_readPublicKeyFromX509PemString; RSAKey.prototype.publicKeyToX509PemString = _rsapem_publicKeyToX509PemString; /*global RSAKey: false, ASN1HEX: false, Uint8Array: false */ /*jslint browser: true, nomen: true */ function SecureRandom() { "use strict"; return undefined; } SecureRandom.prototype.nextBytes = function (ba) { "use strict"; var ua = new Uint8Array(ba.length), i; window.crypto.getRandomValues(ua); for (i = 0; i < ba.length; i += 1) { ba[i] = ua[i]; } }; var _prvKeyHead = "-----BEGIN RSA PRIVATE KEY-----"; var _prvKeyFoot = "-----END RSA PRIVATE KEY-----"; var _pubKeyHead = "-----BEGIN PUBLIC KEY-----"; var _pubKeyFoot = "-----END PUBLIC KEY-----"; /*jslint regexp: true */ var _re_pem = /(.{1,64})/g; /*jslint regexp: false */ function _rsapem_extractEncodedData2(sPEMKey) { "use strict"; var s = sPEMKey; s = s.replace(_prvKeyHead, ""); s = s.replace(_prvKeyFoot, ""); s = s.replace(_pubKeyHead, ""); s = s.replace(_pubKeyFoot, ""); s = s.replace(/[ \n]+/g, ""); return s; } RSAKey.prototype.readPrivateKeyFromPEMString = function (keyPEM) { "use strict"; return this.readPrivateKeyFromPkcs1PemString(_rsapem_extractEncodedData2(keyPEM)); }; RSAKey.prototype.readPublicKeyFromPEMString = function (keyPEM) { "use strict"; return this.readPublicKeyFromX509PEMString(_rsapem_extractEncodedData2(keyPEM)); }; function _asnhex_getStartPosOfV_AtObj(s, pos) { "use strict"; return ASN1HEX.getStartPosOfV_AtObj(s, pos); } function _asnhex_getPosOfNextSibling_AtObj(s, pos) { "use strict"; return ASN1HEX.getPosOfNextSibling_AtObj(s, pos); } function _asnhex_getHexOfV_AtObj(s, pos) { "use strict"; return ASN1HEX.getHexOfV_AtObj(s, pos); }