tools.cobbled-paths/hpgl_multipen_encoder.py

395 lines
20 KiB
Python
Raw Normal View History

2024-03-26 20:42:04 +01:00
# coding=utf-8
'''
Copyright (C) 2008 Aaron Spike, aaron@ekips.org
Copyright (C) 2013 Sebastian Wüst, sebi@timewaster.de
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
'''
# standard libraries
import math
import re
import sys
sys.path.append('/usr/share/inkscape/extensions')
# local libraries
import cspsubdiv
import cubicsuperpath
import inkex
import simplestyle
import simpletransform
class hpglMultipenEncoder:
PI = math.pi
TWO_PI = PI * 2
def __init__(self, effect):
''' options:
"resolutionX":float
"resolutionY":float
"pen":int
"force:int
"speed:int
"orientation":string // "0", "90", "-90", "180"
"mirrorX":bool
"mirrorY":bool
"center":bool
"flat":float
"overcut":float
"toolOffset":float
"precut":bool
"autoAlign":bool
"debug":bool
'''
self.options = effect.options
self.doc = effect.document.getroot()
self.docWidth = effect.unittouu(self.doc.get('width'))
self.docHeight = effect.unittouu(self.doc.get('height'))
self.hpgl = ''
self.divergenceX = 'False'
self.divergenceY = 'False'
self.sizeX = 'False'
self.sizeY = 'False'
self.dryRun = True
self.lastPoint = [0, 0, 0]
self.lastPen = -1
self.offsetX = 0
self.offsetY = 0
self.penIndex = {}
self.penCount = self.options.penCount
self.scaleX = self.options.resolutionX / effect.unittouu("1.0in") # dots per inch to dots per user unit
self.scaleY = self.options.resolutionY / effect.unittouu("1.0in") # dots per inch to dots per user unit
scaleXY = (self.scaleX + self.scaleY) / 2
self.overcut = effect.unittouu(str(self.options.overcut) + "mm") * scaleXY # mm to dots (plotter coordinate system)
self.toolOffset = effect.unittouu(str(self.options.toolOffset) + "mm") * scaleXY # mm to dots
self.flat = self.options.flat / (1016 / ((self.options.resolutionX + self.options.resolutionY) / 2)) # scale flatness to resolution
if self.toolOffset > 0.0:
self.toolOffsetFlat = self.flat / self.toolOffset * 4.5 # scale flatness to offset
else:
self.toolOffsetFlat = 0.0
self.mirrorX = 1.0
if self.options.mirrorX:
self.mirrorX = -1.0
self.mirrorY = -1.0
if self.options.mirrorY:
self.mirrorY = 1.0
if self.options.debug:
self.debugValues = {}
self.debugValues['docWidth'] = self.docWidth
self.debugValues['docHeight'] = self.docHeight
# process viewBox attribute to correct page scaling
self.viewBoxTransformX = 1
self.viewBoxTransformY = 1
if self.options.debug:
self.debugValues['viewBoxWidth'] = "-"
self.debugValues['viewBoxHeight'] = "-"
viewBox = self.doc.get('viewBox')
if viewBox:
viewBox2 = viewBox.split(',')
if len(viewBox2) < 4:
viewBox2 = viewBox.split(' ')
if self.options.debug:
self.debugValues['viewBoxWidth'] = viewBox2[2]
self.debugValues['viewBoxHeight'] = viewBox2[3]
self.viewBoxTransformX = self.docWidth / effect.unittouu(effect.addDocumentUnit(viewBox2[2]))
self.viewBoxTransformY = self.docHeight / effect.unittouu(effect.addDocumentUnit(viewBox2[3]))
def getHpgl(self):
# dryRun to find edges
groupmat = [[self.mirrorX * self.scaleX * self.viewBoxTransformX, 0.0, 0.0], [0.0, self.mirrorY * self.scaleY * self.viewBoxTransformY, 0.0]]
groupmat = simpletransform.composeTransform(groupmat, simpletransform.parseTransform('rotate(' + self.options.orientation + ')'))
self.vData = [['', 'False', 0, 0], ['', 'False', 0, 0], ['', 'False', 0, 0], ['', 'False', 0, 0]]
self.processGroups(self.doc, groupmat)
if self.divergenceX == 'False' or self.divergenceY == 'False' or self.sizeX == 'False' or self.sizeY == 'False':
raise Exception('NO_PATHS')
# live run
self.dryRun = False
if self.options.debug:
self.debugValues['drawingWidth'] = self.sizeX - self.divergenceX
self.debugValues['drawingHeight'] = self.sizeY - self.divergenceY
self.debugValues['drawingWidthUU'] = self.debugValues['drawingWidth'] / self.scaleX
self.debugValues['drawingHeightUU'] = self.debugValues['drawingHeight'] / self.scaleY
# move drawing according to various modifiers
if self.options.autoAlign:
if self.options.center:
self.offsetX -= (self.sizeX - self.divergenceX) / 2
self.offsetY -= (self.sizeY - self.divergenceY) / 2
else:
self.divergenceX = 0.0
self.divergenceY = 0.0
if self.options.center:
if self.options.orientation == '0':
self.offsetX -= (self.docWidth * self.scaleX) / 2
self.offsetY += (self.docHeight * self.scaleY) / 2
if self.options.orientation == '90':
self.offsetY += (self.docWidth * self.scaleX) / 2
self.offsetX += (self.docHeight * self.scaleY) / 2
if self.options.orientation == '180':
self.offsetX += (self.docWidth * self.scaleX) / 2
self.offsetY -= (self.docHeight * self.scaleY) / 2
if self.options.orientation == '270':
self.offsetY -= (self.docWidth * self.scaleX) / 2
self.offsetX -= (self.docHeight * self.scaleY) / 2
else:
if self.options.orientation == '0':
self.offsetY += self.docHeight * self.scaleY
if self.options.orientation == '90':
self.offsetY += self.docWidth * self.scaleX
self.offsetX += self.docHeight * self.scaleY
if self.options.orientation == '180':
self.offsetX += self.docWidth * self.scaleX
if not self.options.center and self.toolOffset > 0.0:
self.offsetX += self.toolOffset
self.offsetY += self.toolOffset
# initialize transformation matrix and cache
groupmat = [[self.mirrorX * self.scaleX * self.viewBoxTransformX, 0.0, -self.divergenceX + self.offsetX],
[0.0, self.mirrorY * self.scaleY * self.viewBoxTransformY, -self.divergenceY + self.offsetY]]
groupmat = simpletransform.composeTransform(groupmat, simpletransform.parseTransform('rotate(' + self.options.orientation + ')'))
self.vData = [['', 'False', 0, 0], ['', 'False', 0, 0], ['', 'False', 0, 0], ['', 'False', 0, 0]]
# add move to zero point and precut
if self.toolOffset > 0.0 and self.options.precut:
if self.options.center:
# position precut outside of drawing plus one time the tooloffset
if self.offsetX >= 0.0:
precutX = self.offsetX + self.toolOffset
else:
precutX = self.offsetX - self.toolOffset
if self.offsetY >= 0.0:
precutY = self.offsetY + self.toolOffset
else:
precutY = self.offsetY - self.toolOffset
self.processOffset('PU', precutX, precutY, self.options.pen)
self.processOffset('PD', precutX, precutY + self.toolOffset * 8, self.options.pen)
else:
self.processOffset('PU', 0, 0, self.options.pen)
self.processOffset('PD', 0, self.toolOffset * 8, self.options.pen)
# start conversion
self.processGroups(self.doc, groupmat)
# shift an empty node in in order to process last node in cache
if self.toolOffset > 0.0 and not self.dryRun:
self.processOffset('PU', 0, 0, 0)
if self.options.debug:
return self.hpgl, self
else:
return self.hpgl, ""
def processGroups(self, doc, groupmat):
# flatten layers and groups to avoid recursion
paths = []
for node in doc:
if (node.tag == inkex.addNS('g', 'svg') and self.isGroupVisible(node)) or node.tag == inkex.addNS('path', 'svg'):
paths.append([node.tag, node, self.mergeTransform(node, groupmat), self.getPenNumber(node)])
doc = ''
hasGroups = True
while hasGroups:
hasGroups = False
for i, elm in enumerate(paths):
if paths[i][0] == inkex.addNS('g', 'svg') and self.isGroupVisible(paths[i][1]):
hasGroups = True
for path in paths[i][1]:
if (path.tag == inkex.addNS('g', 'svg') and self.isGroupVisible(path)) or path.tag == inkex.addNS('path', 'svg'):
paths.insert(i + 1, [path.tag, path, self.mergeTransform(path, paths[i][2]), paths[i][3]])
paths[i][0] = ''
for node in paths:
if node[0] == inkex.addNS('path', 'svg'):
self.processPath(node[1], node[2], node[3])
def getPenNumber(self, doc):
penNum = str(doc.get('{' + inkex.NSS['inkscape'] + '}label')).lower().strip(' \t\n\r')
if re.search(r'( |\A)pen *\d+( |\Z)', penNum):
penNum = re.sub(r'(.* |\A)pen *(\d+)( .*|\Z)', r'\2', penNum, 1)
return int(penNum)
else:
style = doc.get('style')
style = simplestyle.parseStyle(style)
if 'stroke' in style and style['stroke'] != 'none':
color = style['stroke']
elif 'fill' in style and style['fill'] != 'none':
color = style['fill']
else:
return None
if not self.penIndex.has_key(color):
penNum = (len(self.penIndex) + 1) % self.penCount
self.penIndex[color] = self.penCount if penNum == 0 else penNum
return self.penIndex[color]
# return self.options.pen
def mergeTransform(self, doc, matrix):
# get and merge two matrixes into one
trans = doc.get('transform')
if trans:
return simpletransform.composeTransform(matrix, simpletransform.parseTransform(trans))
else:
return matrix
def isGroupVisible(self, group):
style = group.get('style')
if style:
style = simplestyle.parseStyle(style)
if 'display' in style and style['display'] == 'none':
return False
return True
def processPath(self, node, mat, pen):
# process path
path = node.get('d')
if path:
# parse and transform path
path = cubicsuperpath.parsePath(path)
simpletransform.applyTransformToPath(mat, path)
cspsubdiv.cspsubdiv(path, self.flat)
# path to HPGL commands
oldPosX = 0.0
oldPosY = 0.0
for singlePath in path:
cmd = 'PU'
for singlePathPoint in singlePath:
posX, posY = singlePathPoint[1]
# check if point is repeating, if so, ignore
if int(round(posX)) != int(round(oldPosX)) or int(round(posY)) != int(round(oldPosY)):
self.processOffset(cmd, posX, posY, pen)
cmd = 'PD'
oldPosX = posX
oldPosY = posY
# perform overcut
if self.overcut > 0.0 and not self.dryRun:
# check if last and first points are the same, otherwise the path is not closed and no overcut can be performed
if int(round(oldPosX)) == int(round(singlePath[0][1][0])) and int(round(oldPosY)) == int(round(singlePath[0][1][1])):
overcutLength = 0
for singlePathPoint in singlePath:
posX, posY = singlePathPoint[1]
# check if point is repeating, if so, ignore
if int(round(posX)) != int(round(oldPosX)) or int(round(posY)) != int(round(oldPosY)):
overcutLength += self.getLength(oldPosX, oldPosY, posX, posY)
if overcutLength >= self.overcut:
newLength = self.changeLength(oldPosX, oldPosY, posX, posY, - (overcutLength - self.overcut))
self.processOffset(cmd, newLength[0], newLength[1], pen)
break
else:
self.processOffset(cmd, posX, posY, pen)
oldPosX = posX
oldPosY = posY
def getLength(self, x1, y1, x2, y2, absolute=True):
# calc absoulute or relative length between two points
length = math.sqrt((x2 - x1) ** 2.0 + (y2 - y1) ** 2.0)
if absolute:
length = math.fabs(length)
return length
def changeLength(self, x1, y1, x2, y2, offset):
# change length of line
if offset < 0:
offset = max( - self.getLength(x1, y1, x2, y2), offset)
x = x2 + (x2 - x1) / self.getLength(x1, y1, x2, y2, False) * offset
y = y2 + (y2 - y1) / self.getLength(x1, y1, x2, y2, False) * offset
return [x, y]
def processOffset(self, cmd, posX, posY, pen):
# calculate offset correction (or dont)
if self.toolOffset == 0.0 or self.dryRun:
self.storePoint(cmd, posX, posY, pen)
else:
# insert data into cache
self.vData.pop(0)
self.vData.insert(3, [cmd, posX, posY, pen])
# decide if enough data is availabe
if self.vData[2][1] != 'False':
if self.vData[1][1] == 'False':
self.storePoint(self.vData[2][0], self.vData[2][1], self.vData[2][2], self.vData[2][3])
else:
# perform tool offset correction (It's a *tad* complicated, if you want to understand it draw the data as lines on paper)
if self.vData[2][0] == 'PD': # If the 3rd entry in the cache is a pen down command make the line longer by the tool offset
pointThree = self.changeLength(self.vData[1][1], self.vData[1][2], self.vData[2][1], self.vData[2][2], self.toolOffset)
self.storePoint('PD', pointThree[0], pointThree[1], self.vData[2][3])
elif self.vData[0][1] != 'False':
# Elif the 1st entry in the cache is filled with data and the 3rd entry is a pen up command shift
# the 3rd entry by the current tool offset position according to the 2nd command
pointThree = self.changeLength(self.vData[0][1], self.vData[0][2], self.vData[1][1], self.vData[1][2], self.toolOffset)
pointThree[0] = self.vData[2][1] - (self.vData[1][1] - pointThree[0])
pointThree[1] = self.vData[2][2] - (self.vData[1][2] - pointThree[1])
self.storePoint('PU', pointThree[0], pointThree[1], self.vData[2][3])
else:
# Else just write the 3rd entry
pointThree = [self.vData[2][1], self.vData[2][2]]
self.storePoint('PU', pointThree[0], pointThree[1], self.vData[2][3])
if self.vData[3][0] == 'PD':
# If the 4th entry in the cache is a pen down command guide tool to next line with a circle between the prolonged 3rd and 4th entry
if self.getLength(self.vData[2][1], self.vData[2][2], self.vData[3][1], self.vData[3][2]) >= self.toolOffset:
pointFour = self.changeLength(self.vData[3][1], self.vData[3][2], self.vData[2][1], self.vData[2][2], - self.toolOffset)
else:
pointFour = self.changeLength(self.vData[2][1], self.vData[2][2], self.vData[3][1], self.vData[3][2],
(self.toolOffset - self.getLength(self.vData[2][1], self.vData[2][2], self.vData[3][1], self.vData[3][2])))
# get angle start and angle vector
angleStart = math.atan2(pointThree[1] - self.vData[2][2], pointThree[0] - self.vData[2][1])
angleVector = math.atan2(pointFour[1] - self.vData[2][2], pointFour[0] - self.vData[2][1]) - angleStart
# switch direction when arc is bigger than 180°
if angleVector > self.PI:
angleVector -= self.TWO_PI
elif angleVector < - self.PI:
angleVector += self.TWO_PI
# draw arc
if angleVector >= 0:
angle = angleStart + self.toolOffsetFlat
while angle < angleStart + angleVector:
self.storePoint('PD', self.vData[2][1] + math.cos(angle) * self.toolOffset, self.vData[2][2] + math.sin(angle) * self.toolOffset, self.vData[2][3])
angle += self.toolOffsetFlat
else:
angle = angleStart - self.toolOffsetFlat
while angle > angleStart + angleVector:
self.storePoint('PD', self.vData[2][1] + math.cos(angle) * self.toolOffset, self.vData[2][2] + math.sin(angle) * self.toolOffset, self.vData[2][3])
angle -= self.toolOffsetFlat
self.storePoint('PD', pointFour[0], pointFour[1], self.vData[3][3])
def storePoint(self, command, x, y, pen):
x = int(round(x))
y = int(round(y))
# skip when no change in movement
if self.lastPoint[0] == command and self.lastPoint[1] == x and self.lastPoint[2] == y:
return
if self.dryRun:
# find edges
if self.divergenceX == 'False' or x < self.divergenceX:
self.divergenceX = x
if self.divergenceY == 'False' or y < self.divergenceY:
self.divergenceY = y
if self.sizeX == 'False' or x > self.sizeX:
self.sizeX = x
if self.sizeY == 'False' or y > self.sizeY:
self.sizeY = y
else:
# store point
if not self.options.center:
# only positive values are allowed (usually)
if x < 0:
x = 0
if y < 0:
y = 0
# select correct pen
if self.lastPen != pen:
self.hpgl += ';SP%d' % pen
# do not repeat command
if command == 'PD' and self.lastPoint[0] == 'PD' and self.lastPen == pen:
self.hpgl += ',%d,%d' % (x, y)
else:
self.hpgl += ';%s%d,%d' % (command, x, y)
self.lastPen = pen
self.lastPoint = [command, x, y]
# vim: expandtab shiftwidth=4 tabstop=8 softtabstop=4 fileencoding=utf-8 textwidth=99