Varia's website
https://varia.zone
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
789 lines
17 KiB
789 lines
17 KiB
5 days ago
|
# LaTeX math to Unicode symbols translation table
|
||
|
# for use with the translate() method of unicode objects.
|
||
|
# Generated with ``write_unichar2tex.py`` from the data in
|
||
|
# http://milde.users.sourceforge.net/LUCR/Math/
|
||
|
|
||
|
# Includes commands from: standard LaTeX, amssymb, amsmath
|
||
|
|
||
|
uni2tex_table = {
|
||
|
160: u'~',
|
||
|
163: u'\\pounds ',
|
||
|
165: u'\\yen ',
|
||
|
172: u'\\neg ',
|
||
|
174: u'\\circledR ',
|
||
|
177: u'\\pm ',
|
||
|
215: u'\\times ',
|
||
|
240: u'\\eth ',
|
||
|
247: u'\\div ',
|
||
|
305: u'\\imath ',
|
||
|
567: u'\\jmath ',
|
||
|
915: u'\\Gamma ',
|
||
|
916: u'\\Delta ',
|
||
|
920: u'\\Theta ',
|
||
|
923: u'\\Lambda ',
|
||
|
926: u'\\Xi ',
|
||
|
928: u'\\Pi ',
|
||
|
931: u'\\Sigma ',
|
||
|
933: u'\\Upsilon ',
|
||
|
934: u'\\Phi ',
|
||
|
936: u'\\Psi ',
|
||
|
937: u'\\Omega ',
|
||
|
945: u'\\alpha ',
|
||
|
946: u'\\beta ',
|
||
|
947: u'\\gamma ',
|
||
|
948: u'\\delta ',
|
||
|
949: u'\\varepsilon ',
|
||
|
950: u'\\zeta ',
|
||
|
951: u'\\eta ',
|
||
|
952: u'\\theta ',
|
||
|
953: u'\\iota ',
|
||
|
954: u'\\kappa ',
|
||
|
955: u'\\lambda ',
|
||
|
956: u'\\mu ',
|
||
|
957: u'\\nu ',
|
||
|
958: u'\\xi ',
|
||
|
960: u'\\pi ',
|
||
|
961: u'\\rho ',
|
||
|
962: u'\\varsigma ',
|
||
|
963: u'\\sigma ',
|
||
|
964: u'\\tau ',
|
||
|
965: u'\\upsilon ',
|
||
|
966: u'\\varphi ',
|
||
|
967: u'\\chi ',
|
||
|
968: u'\\psi ',
|
||
|
969: u'\\omega ',
|
||
|
977: u'\\vartheta ',
|
||
|
981: u'\\phi ',
|
||
|
982: u'\\varpi ',
|
||
|
989: u'\\digamma ',
|
||
|
1014: u'\\backepsilon ',
|
||
|
8193: u'\\quad ',
|
||
|
8214: u'\\| ',
|
||
|
8224: u'\\dagger ',
|
||
|
8225: u'\\ddagger ',
|
||
|
8230: u'\\ldots ',
|
||
|
8242: u'\\prime ',
|
||
|
8245: u'\\backprime ',
|
||
|
8287: u'\\: ',
|
||
|
8450: u'\\mathbb{C}',
|
||
|
8459: u'\\mathcal{H}',
|
||
|
8460: u'\\mathfrak{H}',
|
||
|
8461: u'\\mathbb{H}',
|
||
|
8463: u'\\hslash ',
|
||
|
8464: u'\\mathcal{I}',
|
||
|
8465: u'\\Im ',
|
||
|
8466: u'\\mathcal{L}',
|
||
|
8467: u'\\ell ',
|
||
|
8469: u'\\mathbb{N}',
|
||
|
8472: u'\\wp ',
|
||
|
8473: u'\\mathbb{P}',
|
||
|
8474: u'\\mathbb{Q}',
|
||
|
8475: u'\\mathcal{R}',
|
||
|
8476: u'\\Re ',
|
||
|
8477: u'\\mathbb{R}',
|
||
|
8484: u'\\mathbb{Z}',
|
||
|
8487: u'\\mho ',
|
||
|
8488: u'\\mathfrak{Z}',
|
||
|
8492: u'\\mathcal{B}',
|
||
|
8493: u'\\mathfrak{C}',
|
||
|
8496: u'\\mathcal{E}',
|
||
|
8497: u'\\mathcal{F}',
|
||
|
8498: u'\\Finv ',
|
||
|
8499: u'\\mathcal{M}',
|
||
|
8501: u'\\aleph ',
|
||
|
8502: u'\\beth ',
|
||
|
8503: u'\\gimel ',
|
||
|
8504: u'\\daleth ',
|
||
|
8592: u'\\leftarrow ',
|
||
|
8593: u'\\uparrow ',
|
||
|
8594: u'\\rightarrow ',
|
||
|
8595: u'\\downarrow ',
|
||
|
8596: u'\\leftrightarrow ',
|
||
|
8597: u'\\updownarrow ',
|
||
|
8598: u'\\nwarrow ',
|
||
|
8599: u'\\nearrow ',
|
||
|
8600: u'\\searrow ',
|
||
|
8601: u'\\swarrow ',
|
||
|
8602: u'\\nleftarrow ',
|
||
|
8603: u'\\nrightarrow ',
|
||
|
8606: u'\\twoheadleftarrow ',
|
||
|
8608: u'\\twoheadrightarrow ',
|
||
|
8610: u'\\leftarrowtail ',
|
||
|
8611: u'\\rightarrowtail ',
|
||
|
8614: u'\\mapsto ',
|
||
|
8617: u'\\hookleftarrow ',
|
||
|
8618: u'\\hookrightarrow ',
|
||
|
8619: u'\\looparrowleft ',
|
||
|
8620: u'\\looparrowright ',
|
||
|
8621: u'\\leftrightsquigarrow ',
|
||
|
8622: u'\\nleftrightarrow ',
|
||
|
8624: u'\\Lsh ',
|
||
|
8625: u'\\Rsh ',
|
||
|
8630: u'\\curvearrowleft ',
|
||
|
8631: u'\\curvearrowright ',
|
||
|
8634: u'\\circlearrowleft ',
|
||
|
8635: u'\\circlearrowright ',
|
||
|
8636: u'\\leftharpoonup ',
|
||
|
8637: u'\\leftharpoondown ',
|
||
|
8638: u'\\upharpoonright ',
|
||
|
8639: u'\\upharpoonleft ',
|
||
|
8640: u'\\rightharpoonup ',
|
||
|
8641: u'\\rightharpoondown ',
|
||
|
8642: u'\\downharpoonright ',
|
||
|
8643: u'\\downharpoonleft ',
|
||
|
8644: u'\\rightleftarrows ',
|
||
|
8646: u'\\leftrightarrows ',
|
||
|
8647: u'\\leftleftarrows ',
|
||
|
8648: u'\\upuparrows ',
|
||
|
8649: u'\\rightrightarrows ',
|
||
|
8650: u'\\downdownarrows ',
|
||
|
8651: u'\\leftrightharpoons ',
|
||
|
8652: u'\\rightleftharpoons ',
|
||
|
8653: u'\\nLeftarrow ',
|
||
|
8654: u'\\nLeftrightarrow ',
|
||
|
8655: u'\\nRightarrow ',
|
||
|
8656: u'\\Leftarrow ',
|
||
|
8657: u'\\Uparrow ',
|
||
|
8658: u'\\Rightarrow ',
|
||
|
8659: u'\\Downarrow ',
|
||
|
8660: u'\\Leftrightarrow ',
|
||
|
8661: u'\\Updownarrow ',
|
||
|
8666: u'\\Lleftarrow ',
|
||
|
8667: u'\\Rrightarrow ',
|
||
|
8669: u'\\rightsquigarrow ',
|
||
|
8672: u'\\dashleftarrow ',
|
||
|
8674: u'\\dashrightarrow ',
|
||
|
8704: u'\\forall ',
|
||
|
8705: u'\\complement ',
|
||
|
8706: u'\\partial ',
|
||
|
8707: u'\\exists ',
|
||
|
8708: u'\\nexists ',
|
||
|
8709: u'\\varnothing ',
|
||
|
8711: u'\\nabla ',
|
||
|
8712: u'\\in ',
|
||
|
8713: u'\\notin ',
|
||
|
8715: u'\\ni ',
|
||
|
8719: u'\\prod ',
|
||
|
8720: u'\\coprod ',
|
||
|
8721: u'\\sum ',
|
||
|
8722: u'-',
|
||
|
8723: u'\\mp ',
|
||
|
8724: u'\\dotplus ',
|
||
|
8725: u'\\slash ',
|
||
|
8726: u'\\smallsetminus ',
|
||
|
8727: u'\\ast ',
|
||
|
8728: u'\\circ ',
|
||
|
8729: u'\\bullet ',
|
||
|
8730: u'\\sqrt ',
|
||
|
8731: u'\\sqrt[3] ',
|
||
|
8732: u'\\sqrt[4] ',
|
||
|
8733: u'\\propto ',
|
||
|
8734: u'\\infty ',
|
||
|
8736: u'\\angle ',
|
||
|
8737: u'\\measuredangle ',
|
||
|
8738: u'\\sphericalangle ',
|
||
|
8739: u'\\mid ',
|
||
|
8740: u'\\nmid ',
|
||
|
8741: u'\\parallel ',
|
||
|
8742: u'\\nparallel ',
|
||
|
8743: u'\\wedge ',
|
||
|
8744: u'\\vee ',
|
||
|
8745: u'\\cap ',
|
||
|
8746: u'\\cup ',
|
||
|
8747: u'\\int ',
|
||
|
8748: u'\\iint ',
|
||
|
8749: u'\\iiint ',
|
||
|
8750: u'\\oint ',
|
||
|
8756: u'\\therefore ',
|
||
|
8757: u'\\because ',
|
||
|
8758: u':',
|
||
|
8764: u'\\sim ',
|
||
|
8765: u'\\backsim ',
|
||
|
8768: u'\\wr ',
|
||
|
8769: u'\\nsim ',
|
||
|
8770: u'\\eqsim ',
|
||
|
8771: u'\\simeq ',
|
||
|
8773: u'\\cong ',
|
||
|
8775: u'\\ncong ',
|
||
|
8776: u'\\approx ',
|
||
|
8778: u'\\approxeq ',
|
||
|
8781: u'\\asymp ',
|
||
|
8782: u'\\Bumpeq ',
|
||
|
8783: u'\\bumpeq ',
|
||
|
8784: u'\\doteq ',
|
||
|
8785: u'\\Doteq ',
|
||
|
8786: u'\\fallingdotseq ',
|
||
|
8787: u'\\risingdotseq ',
|
||
|
8790: u'\\eqcirc ',
|
||
|
8791: u'\\circeq ',
|
||
|
8796: u'\\triangleq ',
|
||
|
8800: u'\\neq ',
|
||
|
8801: u'\\equiv ',
|
||
|
8804: u'\\leq ',
|
||
|
8805: u'\\geq ',
|
||
|
8806: u'\\leqq ',
|
||
|
8807: u'\\geqq ',
|
||
|
8808: u'\\lneqq ',
|
||
|
8809: u'\\gneqq ',
|
||
|
8810: u'\\ll ',
|
||
|
8811: u'\\gg ',
|
||
|
8812: u'\\between ',
|
||
|
8814: u'\\nless ',
|
||
|
8815: u'\\ngtr ',
|
||
|
8816: u'\\nleq ',
|
||
|
8817: u'\\ngeq ',
|
||
|
8818: u'\\lesssim ',
|
||
|
8819: u'\\gtrsim ',
|
||
|
8822: u'\\lessgtr ',
|
||
|
8823: u'\\gtrless ',
|
||
|
8826: u'\\prec ',
|
||
|
8827: u'\\succ ',
|
||
|
8828: u'\\preccurlyeq ',
|
||
|
8829: u'\\succcurlyeq ',
|
||
|
8830: u'\\precsim ',
|
||
|
8831: u'\\succsim ',
|
||
|
8832: u'\\nprec ',
|
||
|
8833: u'\\nsucc ',
|
||
|
8834: u'\\subset ',
|
||
|
8835: u'\\supset ',
|
||
|
8838: u'\\subseteq ',
|
||
|
8839: u'\\supseteq ',
|
||
|
8840: u'\\nsubseteq ',
|
||
|
8841: u'\\nsupseteq ',
|
||
|
8842: u'\\subsetneq ',
|
||
|
8843: u'\\supsetneq ',
|
||
|
8846: u'\\uplus ',
|
||
|
8847: u'\\sqsubset ',
|
||
|
8848: u'\\sqsupset ',
|
||
|
8849: u'\\sqsubseteq ',
|
||
|
8850: u'\\sqsupseteq ',
|
||
|
8851: u'\\sqcap ',
|
||
|
8852: u'\\sqcup ',
|
||
|
8853: u'\\oplus ',
|
||
|
8854: u'\\ominus ',
|
||
|
8855: u'\\otimes ',
|
||
|
8856: u'\\oslash ',
|
||
|
8857: u'\\odot ',
|
||
|
8858: u'\\circledcirc ',
|
||
|
8859: u'\\circledast ',
|
||
|
8861: u'\\circleddash ',
|
||
|
8862: u'\\boxplus ',
|
||
|
8863: u'\\boxminus ',
|
||
|
8864: u'\\boxtimes ',
|
||
|
8865: u'\\boxdot ',
|
||
|
8866: u'\\vdash ',
|
||
|
8867: u'\\dashv ',
|
||
|
8868: u'\\top ',
|
||
|
8869: u'\\bot ',
|
||
|
8871: u'\\models ',
|
||
|
8872: u'\\vDash ',
|
||
|
8873: u'\\Vdash ',
|
||
|
8874: u'\\Vvdash ',
|
||
|
8876: u'\\nvdash ',
|
||
|
8877: u'\\nvDash ',
|
||
|
8878: u'\\nVdash ',
|
||
|
8879: u'\\nVDash ',
|
||
|
8882: u'\\vartriangleleft ',
|
||
|
8883: u'\\vartriangleright ',
|
||
|
8884: u'\\trianglelefteq ',
|
||
|
8885: u'\\trianglerighteq ',
|
||
|
8888: u'\\multimap ',
|
||
|
8890: u'\\intercal ',
|
||
|
8891: u'\\veebar ',
|
||
|
8892: u'\\barwedge ',
|
||
|
8896: u'\\bigwedge ',
|
||
|
8897: u'\\bigvee ',
|
||
|
8898: u'\\bigcap ',
|
||
|
8899: u'\\bigcup ',
|
||
|
8900: u'\\diamond ',
|
||
|
8901: u'\\cdot ',
|
||
|
8902: u'\\star ',
|
||
|
8903: u'\\divideontimes ',
|
||
|
8904: u'\\bowtie ',
|
||
|
8905: u'\\ltimes ',
|
||
|
8906: u'\\rtimes ',
|
||
|
8907: u'\\leftthreetimes ',
|
||
|
8908: u'\\rightthreetimes ',
|
||
|
8909: u'\\backsimeq ',
|
||
|
8910: u'\\curlyvee ',
|
||
|
8911: u'\\curlywedge ',
|
||
|
8912: u'\\Subset ',
|
||
|
8913: u'\\Supset ',
|
||
|
8914: u'\\Cap ',
|
||
|
8915: u'\\Cup ',
|
||
|
8916: u'\\pitchfork ',
|
||
|
8918: u'\\lessdot ',
|
||
|
8919: u'\\gtrdot ',
|
||
|
8920: u'\\lll ',
|
||
|
8921: u'\\ggg ',
|
||
|
8922: u'\\lesseqgtr ',
|
||
|
8923: u'\\gtreqless ',
|
||
|
8926: u'\\curlyeqprec ',
|
||
|
8927: u'\\curlyeqsucc ',
|
||
|
8928: u'\\npreceq ',
|
||
|
8929: u'\\nsucceq ',
|
||
|
8934: u'\\lnsim ',
|
||
|
8935: u'\\gnsim ',
|
||
|
8936: u'\\precnsim ',
|
||
|
8937: u'\\succnsim ',
|
||
|
8938: u'\\ntriangleleft ',
|
||
|
8939: u'\\ntriangleright ',
|
||
|
8940: u'\\ntrianglelefteq ',
|
||
|
8941: u'\\ntrianglerighteq ',
|
||
|
8942: u'\\vdots ',
|
||
|
8943: u'\\cdots ',
|
||
|
8945: u'\\ddots ',
|
||
|
8968: u'\\lceil ',
|
||
|
8969: u'\\rceil ',
|
||
|
8970: u'\\lfloor ',
|
||
|
8971: u'\\rfloor ',
|
||
|
8988: u'\\ulcorner ',
|
||
|
8989: u'\\urcorner ',
|
||
|
8990: u'\\llcorner ',
|
||
|
8991: u'\\lrcorner ',
|
||
|
8994: u'\\frown ',
|
||
|
8995: u'\\smile ',
|
||
|
9182: u'\\overbrace ',
|
||
|
9183: u'\\underbrace ',
|
||
|
9651: u'\\bigtriangleup ',
|
||
|
9655: u'\\rhd ',
|
||
|
9661: u'\\bigtriangledown ',
|
||
|
9665: u'\\lhd ',
|
||
|
9671: u'\\Diamond ',
|
||
|
9674: u'\\lozenge ',
|
||
|
9723: u'\\square ',
|
||
|
9724: u'\\blacksquare ',
|
||
|
9733: u'\\bigstar ',
|
||
|
9824: u'\\spadesuit ',
|
||
|
9825: u'\\heartsuit ',
|
||
|
9826: u'\\diamondsuit ',
|
||
|
9827: u'\\clubsuit ',
|
||
|
9837: u'\\flat ',
|
||
|
9838: u'\\natural ',
|
||
|
9839: u'\\sharp ',
|
||
|
10003: u'\\checkmark ',
|
||
|
10016: u'\\maltese ',
|
||
|
10178: u'\\perp ',
|
||
|
10216: u'\\langle ',
|
||
|
10217: u'\\rangle ',
|
||
|
10222: u'\\lgroup ',
|
||
|
10223: u'\\rgroup ',
|
||
|
10229: u'\\longleftarrow ',
|
||
|
10230: u'\\longrightarrow ',
|
||
|
10231: u'\\longleftrightarrow ',
|
||
|
10232: u'\\Longleftarrow ',
|
||
|
10233: u'\\Longrightarrow ',
|
||
|
10234: u'\\Longleftrightarrow ',
|
||
|
10236: u'\\longmapsto ',
|
||
|
10731: u'\\blacklozenge ',
|
||
|
10741: u'\\setminus ',
|
||
|
10752: u'\\bigodot ',
|
||
|
10753: u'\\bigoplus ',
|
||
|
10754: u'\\bigotimes ',
|
||
|
10756: u'\\biguplus ',
|
||
|
10758: u'\\bigsqcup ',
|
||
|
10764: u'\\iiiint ',
|
||
|
10781: u'\\Join ',
|
||
|
10815: u'\\amalg ',
|
||
|
10846: u'\\doublebarwedge ',
|
||
|
10877: u'\\leqslant ',
|
||
|
10878: u'\\geqslant ',
|
||
|
10885: u'\\lessapprox ',
|
||
|
10886: u'\\gtrapprox ',
|
||
|
10887: u'\\lneq ',
|
||
|
10888: u'\\gneq ',
|
||
|
10889: u'\\lnapprox ',
|
||
|
10890: u'\\gnapprox ',
|
||
|
10891: u'\\lesseqqgtr ',
|
||
|
10892: u'\\gtreqqless ',
|
||
|
10901: u'\\eqslantless ',
|
||
|
10902: u'\\eqslantgtr ',
|
||
|
10927: u'\\preceq ',
|
||
|
10928: u'\\succeq ',
|
||
|
10935: u'\\precapprox ',
|
||
|
10936: u'\\succapprox ',
|
||
|
10937: u'\\precnapprox ',
|
||
|
10938: u'\\succnapprox ',
|
||
|
10949: u'\\subseteqq ',
|
||
|
10950: u'\\supseteqq ',
|
||
|
10955: u'\\subsetneqq ',
|
||
|
10956: u'\\supsetneqq ',
|
||
|
119808: u'\\mathbf{A}',
|
||
|
119809: u'\\mathbf{B}',
|
||
|
119810: u'\\mathbf{C}',
|
||
|
119811: u'\\mathbf{D}',
|
||
|
119812: u'\\mathbf{E}',
|
||
|
119813: u'\\mathbf{F}',
|
||
|
119814: u'\\mathbf{G}',
|
||
|
119815: u'\\mathbf{H}',
|
||
|
119816: u'\\mathbf{I}',
|
||
|
119817: u'\\mathbf{J}',
|
||
|
119818: u'\\mathbf{K}',
|
||
|
119819: u'\\mathbf{L}',
|
||
|
119820: u'\\mathbf{M}',
|
||
|
119821: u'\\mathbf{N}',
|
||
|
119822: u'\\mathbf{O}',
|
||
|
119823: u'\\mathbf{P}',
|
||
|
119824: u'\\mathbf{Q}',
|
||
|
119825: u'\\mathbf{R}',
|
||
|
119826: u'\\mathbf{S}',
|
||
|
119827: u'\\mathbf{T}',
|
||
|
119828: u'\\mathbf{U}',
|
||
|
119829: u'\\mathbf{V}',
|
||
|
119830: u'\\mathbf{W}',
|
||
|
119831: u'\\mathbf{X}',
|
||
|
119832: u'\\mathbf{Y}',
|
||
|
119833: u'\\mathbf{Z}',
|
||
|
119834: u'\\mathbf{a}',
|
||
|
119835: u'\\mathbf{b}',
|
||
|
119836: u'\\mathbf{c}',
|
||
|
119837: u'\\mathbf{d}',
|
||
|
119838: u'\\mathbf{e}',
|
||
|
119839: u'\\mathbf{f}',
|
||
|
119840: u'\\mathbf{g}',
|
||
|
119841: u'\\mathbf{h}',
|
||
|
119842: u'\\mathbf{i}',
|
||
|
119843: u'\\mathbf{j}',
|
||
|
119844: u'\\mathbf{k}',
|
||
|
119845: u'\\mathbf{l}',
|
||
|
119846: u'\\mathbf{m}',
|
||
|
119847: u'\\mathbf{n}',
|
||
|
119848: u'\\mathbf{o}',
|
||
|
119849: u'\\mathbf{p}',
|
||
|
119850: u'\\mathbf{q}',
|
||
|
119851: u'\\mathbf{r}',
|
||
|
119852: u'\\mathbf{s}',
|
||
|
119853: u'\\mathbf{t}',
|
||
|
119854: u'\\mathbf{u}',
|
||
|
119855: u'\\mathbf{v}',
|
||
|
119856: u'\\mathbf{w}',
|
||
|
119857: u'\\mathbf{x}',
|
||
|
119858: u'\\mathbf{y}',
|
||
|
119859: u'\\mathbf{z}',
|
||
|
119860: u'A',
|
||
|
119861: u'B',
|
||
|
119862: u'C',
|
||
|
119863: u'D',
|
||
|
119864: u'E',
|
||
|
119865: u'F',
|
||
|
119866: u'G',
|
||
|
119867: u'H',
|
||
|
119868: u'I',
|
||
|
119869: u'J',
|
||
|
119870: u'K',
|
||
|
119871: u'L',
|
||
|
119872: u'M',
|
||
|
119873: u'N',
|
||
|
119874: u'O',
|
||
|
119875: u'P',
|
||
|
119876: u'Q',
|
||
|
119877: u'R',
|
||
|
119878: u'S',
|
||
|
119879: u'T',
|
||
|
119880: u'U',
|
||
|
119881: u'V',
|
||
|
119882: u'W',
|
||
|
119883: u'X',
|
||
|
119884: u'Y',
|
||
|
119885: u'Z',
|
||
|
119886: u'a',
|
||
|
119887: u'b',
|
||
|
119888: u'c',
|
||
|
119889: u'd',
|
||
|
119890: u'e',
|
||
|
119891: u'f',
|
||
|
119892: u'g',
|
||
|
119894: u'i',
|
||
|
119895: u'j',
|
||
|
119896: u'k',
|
||
|
119897: u'l',
|
||
|
119898: u'm',
|
||
|
119899: u'n',
|
||
|
119900: u'o',
|
||
|
119901: u'p',
|
||
|
119902: u'q',
|
||
|
119903: u'r',
|
||
|
119904: u's',
|
||
|
119905: u't',
|
||
|
119906: u'u',
|
||
|
119907: u'v',
|
||
|
119908: u'w',
|
||
|
119909: u'x',
|
||
|
119910: u'y',
|
||
|
119911: u'z',
|
||
|
119964: u'\\mathcal{A}',
|
||
|
119966: u'\\mathcal{C}',
|
||
|
119967: u'\\mathcal{D}',
|
||
|
119970: u'\\mathcal{G}',
|
||
|
119973: u'\\mathcal{J}',
|
||
|
119974: u'\\mathcal{K}',
|
||
|
119977: u'\\mathcal{N}',
|
||
|
119978: u'\\mathcal{O}',
|
||
|
119979: u'\\mathcal{P}',
|
||
|
119980: u'\\mathcal{Q}',
|
||
|
119982: u'\\mathcal{S}',
|
||
|
119983: u'\\mathcal{T}',
|
||
|
119984: u'\\mathcal{U}',
|
||
|
119985: u'\\mathcal{V}',
|
||
|
119986: u'\\mathcal{W}',
|
||
|
119987: u'\\mathcal{X}',
|
||
|
119988: u'\\mathcal{Y}',
|
||
|
119989: u'\\mathcal{Z}',
|
||
|
120068: u'\\mathfrak{A}',
|
||
|
120069: u'\\mathfrak{B}',
|
||
|
120071: u'\\mathfrak{D}',
|
||
|
120072: u'\\mathfrak{E}',
|
||
|
120073: u'\\mathfrak{F}',
|
||
|
120074: u'\\mathfrak{G}',
|
||
|
120077: u'\\mathfrak{J}',
|
||
|
120078: u'\\mathfrak{K}',
|
||
|
120079: u'\\mathfrak{L}',
|
||
|
120080: u'\\mathfrak{M}',
|
||
|
120081: u'\\mathfrak{N}',
|
||
|
120082: u'\\mathfrak{O}',
|
||
|
120083: u'\\mathfrak{P}',
|
||
|
120084: u'\\mathfrak{Q}',
|
||
|
120086: u'\\mathfrak{S}',
|
||
|
120087: u'\\mathfrak{T}',
|
||
|
120088: u'\\mathfrak{U}',
|
||
|
120089: u'\\mathfrak{V}',
|
||
|
120090: u'\\mathfrak{W}',
|
||
|
120091: u'\\mathfrak{X}',
|
||
|
120092: u'\\mathfrak{Y}',
|
||
|
120094: u'\\mathfrak{a}',
|
||
|
120095: u'\\mathfrak{b}',
|
||
|
120096: u'\\mathfrak{c}',
|
||
|
120097: u'\\mathfrak{d}',
|
||
|
120098: u'\\mathfrak{e}',
|
||
|
120099: u'\\mathfrak{f}',
|
||
|
120100: u'\\mathfrak{g}',
|
||
|
120101: u'\\mathfrak{h}',
|
||
|
120102: u'\\mathfrak{i}',
|
||
|
120103: u'\\mathfrak{j}',
|
||
|
120104: u'\\mathfrak{k}',
|
||
|
120105: u'\\mathfrak{l}',
|
||
|
120106: u'\\mathfrak{m}',
|
||
|
120107: u'\\mathfrak{n}',
|
||
|
120108: u'\\mathfrak{o}',
|
||
|
120109: u'\\mathfrak{p}',
|
||
|
120110: u'\\mathfrak{q}',
|
||
|
120111: u'\\mathfrak{r}',
|
||
|
120112: u'\\mathfrak{s}',
|
||
|
120113: u'\\mathfrak{t}',
|
||
|
120114: u'\\mathfrak{u}',
|
||
|
120115: u'\\mathfrak{v}',
|
||
|
120116: u'\\mathfrak{w}',
|
||
|
120117: u'\\mathfrak{x}',
|
||
|
120118: u'\\mathfrak{y}',
|
||
|
120119: u'\\mathfrak{z}',
|
||
|
120120: u'\\mathbb{A}',
|
||
|
120121: u'\\mathbb{B}',
|
||
|
120123: u'\\mathbb{D}',
|
||
|
120124: u'\\mathbb{E}',
|
||
|
120125: u'\\mathbb{F}',
|
||
|
120126: u'\\mathbb{G}',
|
||
|
120128: u'\\mathbb{I}',
|
||
|
120129: u'\\mathbb{J}',
|
||
|
120130: u'\\mathbb{K}',
|
||
|
120131: u'\\mathbb{L}',
|
||
|
120132: u'\\mathbb{M}',
|
||
|
120134: u'\\mathbb{O}',
|
||
|
120138: u'\\mathbb{S}',
|
||
|
120139: u'\\mathbb{T}',
|
||
|
120140: u'\\mathbb{U}',
|
||
|
120141: u'\\mathbb{V}',
|
||
|
120142: u'\\mathbb{W}',
|
||
|
120143: u'\\mathbb{X}',
|
||
|
120144: u'\\mathbb{Y}',
|
||
|
120156: u'\\Bbbk ',
|
||
|
120224: u'\\mathsf{A}',
|
||
|
120225: u'\\mathsf{B}',
|
||
|
120226: u'\\mathsf{C}',
|
||
|
120227: u'\\mathsf{D}',
|
||
|
120228: u'\\mathsf{E}',
|
||
|
120229: u'\\mathsf{F}',
|
||
|
120230: u'\\mathsf{G}',
|
||
|
120231: u'\\mathsf{H}',
|
||
|
120232: u'\\mathsf{I}',
|
||
|
120233: u'\\mathsf{J}',
|
||
|
120234: u'\\mathsf{K}',
|
||
|
120235: u'\\mathsf{L}',
|
||
|
120236: u'\\mathsf{M}',
|
||
|
120237: u'\\mathsf{N}',
|
||
|
120238: u'\\mathsf{O}',
|
||
|
120239: u'\\mathsf{P}',
|
||
|
120240: u'\\mathsf{Q}',
|
||
|
120241: u'\\mathsf{R}',
|
||
|
120242: u'\\mathsf{S}',
|
||
|
120243: u'\\mathsf{T}',
|
||
|
120244: u'\\mathsf{U}',
|
||
|
120245: u'\\mathsf{V}',
|
||
|
120246: u'\\mathsf{W}',
|
||
|
120247: u'\\mathsf{X}',
|
||
|
120248: u'\\mathsf{Y}',
|
||
|
120249: u'\\mathsf{Z}',
|
||
|
120250: u'\\mathsf{a}',
|
||
|
120251: u'\\mathsf{b}',
|
||
|
120252: u'\\mathsf{c}',
|
||
|
120253: u'\\mathsf{d}',
|
||
|
120254: u'\\mathsf{e}',
|
||
|
120255: u'\\mathsf{f}',
|
||
|
120256: u'\\mathsf{g}',
|
||
|
120257: u'\\mathsf{h}',
|
||
|
120258: u'\\mathsf{i}',
|
||
|
120259: u'\\mathsf{j}',
|
||
|
120260: u'\\mathsf{k}',
|
||
|
120261: u'\\mathsf{l}',
|
||
|
120262: u'\\mathsf{m}',
|
||
|
120263: u'\\mathsf{n}',
|
||
|
120264: u'\\mathsf{o}',
|
||
|
120265: u'\\mathsf{p}',
|
||
|
120266: u'\\mathsf{q}',
|
||
|
120267: u'\\mathsf{r}',
|
||
|
120268: u'\\mathsf{s}',
|
||
|
120269: u'\\mathsf{t}',
|
||
|
120270: u'\\mathsf{u}',
|
||
|
120271: u'\\mathsf{v}',
|
||
|
120272: u'\\mathsf{w}',
|
||
|
120273: u'\\mathsf{x}',
|
||
|
120274: u'\\mathsf{y}',
|
||
|
120275: u'\\mathsf{z}',
|
||
|
120432: u'\\mathtt{A}',
|
||
|
120433: u'\\mathtt{B}',
|
||
|
120434: u'\\mathtt{C}',
|
||
|
120435: u'\\mathtt{D}',
|
||
|
120436: u'\\mathtt{E}',
|
||
|
120437: u'\\mathtt{F}',
|
||
|
120438: u'\\mathtt{G}',
|
||
|
120439: u'\\mathtt{H}',
|
||
|
120440: u'\\mathtt{I}',
|
||
|
120441: u'\\mathtt{J}',
|
||
|
120442: u'\\mathtt{K}',
|
||
|
120443: u'\\mathtt{L}',
|
||
|
120444: u'\\mathtt{M}',
|
||
|
120445: u'\\mathtt{N}',
|
||
|
120446: u'\\mathtt{O}',
|
||
|
120447: u'\\mathtt{P}',
|
||
|
120448: u'\\mathtt{Q}',
|
||
|
120449: u'\\mathtt{R}',
|
||
|
120450: u'\\mathtt{S}',
|
||
|
120451: u'\\mathtt{T}',
|
||
|
120452: u'\\mathtt{U}',
|
||
|
120453: u'\\mathtt{V}',
|
||
|
120454: u'\\mathtt{W}',
|
||
|
120455: u'\\mathtt{X}',
|
||
|
120456: u'\\mathtt{Y}',
|
||
|
120457: u'\\mathtt{Z}',
|
||
|
120458: u'\\mathtt{a}',
|
||
|
120459: u'\\mathtt{b}',
|
||
|
120460: u'\\mathtt{c}',
|
||
|
120461: u'\\mathtt{d}',
|
||
|
120462: u'\\mathtt{e}',
|
||
|
120463: u'\\mathtt{f}',
|
||
|
120464: u'\\mathtt{g}',
|
||
|
120465: u'\\mathtt{h}',
|
||
|
120466: u'\\mathtt{i}',
|
||
|
120467: u'\\mathtt{j}',
|
||
|
120468: u'\\mathtt{k}',
|
||
|
120469: u'\\mathtt{l}',
|
||
|
120470: u'\\mathtt{m}',
|
||
|
120471: u'\\mathtt{n}',
|
||
|
120472: u'\\mathtt{o}',
|
||
|
120473: u'\\mathtt{p}',
|
||
|
120474: u'\\mathtt{q}',
|
||
|
120475: u'\\mathtt{r}',
|
||
|
120476: u'\\mathtt{s}',
|
||
|
120477: u'\\mathtt{t}',
|
||
|
120478: u'\\mathtt{u}',
|
||
|
120479: u'\\mathtt{v}',
|
||
|
120480: u'\\mathtt{w}',
|
||
|
120481: u'\\mathtt{x}',
|
||
|
120482: u'\\mathtt{y}',
|
||
|
120483: u'\\mathtt{z}',
|
||
|
120484: u'\\imath ',
|
||
|
120485: u'\\jmath ',
|
||
|
120490: u'\\mathbf{\\Gamma}',
|
||
|
120491: u'\\mathbf{\\Delta}',
|
||
|
120495: u'\\mathbf{\\Theta}',
|
||
|
120498: u'\\mathbf{\\Lambda}',
|
||
|
120501: u'\\mathbf{\\Xi}',
|
||
|
120503: u'\\mathbf{\\Pi}',
|
||
|
120506: u'\\mathbf{\\Sigma}',
|
||
|
120508: u'\\mathbf{\\Upsilon}',
|
||
|
120509: u'\\mathbf{\\Phi}',
|
||
|
120511: u'\\mathbf{\\Psi}',
|
||
|
120512: u'\\mathbf{\\Omega}',
|
||
|
120548: u'\\mathit{\\Gamma}',
|
||
|
120549: u'\\mathit{\\Delta}',
|
||
|
120553: u'\\mathit{\\Theta}',
|
||
|
120556: u'\\mathit{\\Lambda}',
|
||
|
120559: u'\\mathit{\\Xi}',
|
||
|
120561: u'\\mathit{\\Pi}',
|
||
|
120564: u'\\mathit{\\Sigma}',
|
||
|
120566: u'\\mathit{\\Upsilon}',
|
||
|
120567: u'\\mathit{\\Phi}',
|
||
|
120569: u'\\mathit{\\Psi}',
|
||
|
120570: u'\\mathit{\\Omega}',
|
||
|
120572: u'\\alpha ',
|
||
|
120573: u'\\beta ',
|
||
|
120574: u'\\gamma ',
|
||
|
120575: u'\\delta ',
|
||
|
120576: u'\\varepsilon ',
|
||
|
120577: u'\\zeta ',
|
||
|
120578: u'\\eta ',
|
||
|
120579: u'\\theta ',
|
||
|
120580: u'\\iota ',
|
||
|
120581: u'\\kappa ',
|
||
|
120582: u'\\lambda ',
|
||
|
120583: u'\\mu ',
|
||
|
120584: u'\\nu ',
|
||
|
120585: u'\\xi ',
|
||
|
120587: u'\\pi ',
|
||
|
120588: u'\\rho ',
|
||
|
120589: u'\\varsigma ',
|
||
|
120590: u'\\sigma ',
|
||
|
120591: u'\\tau ',
|
||
|
120592: u'\\upsilon ',
|
||
|
120593: u'\\varphi ',
|
||
|
120594: u'\\chi ',
|
||
|
120595: u'\\psi ',
|
||
|
120596: u'\\omega ',
|
||
|
120597: u'\\partial ',
|
||
|
120598: u'\\epsilon ',
|
||
|
120599: u'\\vartheta ',
|
||
|
120600: u'\\varkappa ',
|
||
|
120601: u'\\phi ',
|
||
|
120602: u'\\varrho ',
|
||
|
120603: u'\\varpi ',
|
||
|
120782: u'\\mathbf{0}',
|
||
|
120783: u'\\mathbf{1}',
|
||
|
120784: u'\\mathbf{2}',
|
||
|
120785: u'\\mathbf{3}',
|
||
|
120786: u'\\mathbf{4}',
|
||
|
120787: u'\\mathbf{5}',
|
||
|
120788: u'\\mathbf{6}',
|
||
|
120789: u'\\mathbf{7}',
|
||
|
120790: u'\\mathbf{8}',
|
||
|
120791: u'\\mathbf{9}',
|
||
|
120802: u'\\mathsf{0}',
|
||
|
120803: u'\\mathsf{1}',
|
||
|
120804: u'\\mathsf{2}',
|
||
|
120805: u'\\mathsf{3}',
|
||
|
120806: u'\\mathsf{4}',
|
||
|
120807: u'\\mathsf{5}',
|
||
|
120808: u'\\mathsf{6}',
|
||
|
120809: u'\\mathsf{7}',
|
||
|
120810: u'\\mathsf{8}',
|
||
|
120811: u'\\mathsf{9}',
|
||
|
120822: u'\\mathtt{0}',
|
||
|
120823: u'\\mathtt{1}',
|
||
|
120824: u'\\mathtt{2}',
|
||
|
120825: u'\\mathtt{3}',
|
||
|
120826: u'\\mathtt{4}',
|
||
|
120827: u'\\mathtt{5}',
|
||
|
120828: u'\\mathtt{6}',
|
||
|
120829: u'\\mathtt{7}',
|
||
|
120830: u'\\mathtt{8}',
|
||
|
120831: u'\\mathtt{9}',
|
||
|
}
|